Impacts of Climate Change on Rice Crop Yields in Vietnam

Presenter: Ze JIANG Tropical Marine Science Institute, National University of Singapore

11 August 2017

National University of Singapore

Team Members

TMSI: Srivatsan RAGHAVAN, HUR Jina, LIONG Shie-Yui

CENSAM/SMART: Chien WANG

CanTho: NGUYEN Van Qui, Van Pham Dang Tri

ARC: Roman HOHL, Tom OSBORNE

Outline

- Background of Vietnam's Rice Cultivated Areas and Yields
- Climate Model Projections
- Crop Model Calibration and Validation
 *Mekong River Delta (Hau Giang)
- Projected Crop Yield in 2020-2050 (Hau Giang)
- Conclusions (based mainly from Hau Giang; with some interpretations from other areas)

1. Background

Climate Vulnerability over Southeast Asia

Source: EEPSEA (Economy and Environment Program for SEA)

Climate change Vulnerability map over Southeast Asia

Major Rice Cultivated Areas

Mekong River Delta: 56% of Vietnam's Rice Output

Red River Delta: 15% of Vietnam's Rice Output

North and South Central Coasts: 15% of Vietnam's Rice Output

PERCENTAGE BRE	AKDOWN 'S		Rank	Country	Quantity (percentage of total imports)
India, Thailand and			4	Myanmar	2.5
90.7 per cent of total rice imports.	32.9%		5	Pakistan	2.4
			6	US	2.2
	THAILAND -		7	Cambodia	0.9
	30.4%	27.4%	8	Australia	0.6
Sources: RICE IMPORTERS,				Others	0.7
INTERNATIONAL ENTERPRIS	E (IE) SINGAPORE				

Study Area: Hau Giang

	Delta	Province
Total Area (million ha)	4.05	0.16 (4% of MRD)
Agricultural land(million ha)	2.61	0.13 (5% of MRD)
Planted Area of Rice(million ha)	4.20	0.21 (5% of MRD)
Annual Yield (t/ha)	5.94	5.85
Rice Production (million tons)	25.24	1.20 (4.8% of MRD)

Mekong River

MRD: 2 or 3 crops per year

asic Information(2014)

Hau Giang: 2 crops per year

Hau Giang

Mekong River Basin + Mekong River Delta

Rice Yield in Hau Giang (2004 – 2014)

Hau Giang Rice Production

Higher productivity in Winter-Spring season ---- Less pest, less pollination failure due to less heavy rain, easier to manage due to less cultivated area

Observed Rainfall over MRD (35 Years; 1981-2015)

Present Climatology (2005-2014)

2. Climate Model Projection

Dynamical Downscaling Domain: Southeast Asia

Spatial Resolution: 30 x 30 km Model Used: WRF (NCAR)

3. Crop Model Calibration and Validation (Hau Giang)

Seasonal Experiment Setup in DSSAT

		Inputs	Source/Name/Type
Present	Calibration	Weather	Observation data
		Cultivar	Fragrant Rice (OM4900)
		Soil	Riverine Fluvial Soil (Hau Gang 2015)
		Management	Constant flood depth; with fertilization
	Validation	Weather	Observation data
		Cultivar	Fragrant Rice (OM4900HG, Calibrated)
		Soil	Riverine Fluvial Soil (Hau Giang 2015)
		Management	Constant flood depth; with fertilization
		Weather	GCMs: CCSM, ECHAM, MIROC
F4		Cultivar	Fragrant Rice (OM4900HG, Calibrated)
F uture		Soil	Riverine Fluvial Soil (Hau Giang 2015)
		Management	Constant flood depth; with fertilization

Model: DSSAT (Decision Support System for Agrotechnology Transfer)

Model Calibration and Validation

Calibrated cultivar coefficients:

Coefficient	Explanation	Unit	Initial Value	Calibrated Value
P1	Thermal time between emergence and basic vegetative phase	°C	625.5	594.2
P2R	Extent to which phasic development leading to panicle initiation is delayed (thermal time)	°C	312.6	282
P5	Thermal time between grain filling and physiological maturity	°C	393.6	499.9
P20	Critical photoperiod or longest day length at which the development occurs at maximum rate	hours	12	13.23
G1	Potential spikelet coefficient	-	55	69.3
G2	Potential single grain weight under ideal growing conditions	gram	0.0265	0.0265
G3	Tillering coefficient under ideal conditions	-	1	1
G4	Temperature tolerance coefficient	-	1	1
PHINT	Thermal time between emergence of successive leaf tips	°C	83	83

	Calib	ration	Validation		
Main growth and development variables	SIMULATED	MEASURED	SIMULATED	MEASURED	
Anthesis day (dap)	62	2 62	2 63	60	
Physiological maturity day (dap)	95	5 9:	5 95	95	
Yield at harvest maturity (kg [dm]/ha)	5824	4 582'	7 5573	5490	
Unit weight at maturity (g [dm]/unit)	0.026	5 0.020	6 0.0265	0.026	

4. Projected Crop Yield in 2020-2050 (Hau Giang)

Model Validation

Validation at Hau Giang (2011-2014)

Projected Future Rice Yield (2020-2050)

Winter-Spring Season

Projected changes in potential yields relative to 2004-2014 mean(%)

HauGiang: Projected Future Rice Yield - Spring

Rainfed Crop Yield: About 24% REDUCTION!

Projected Future Rice Yield (2020-2050)

Summer-Autumn Season

Projected changes in potential yields, relative to 2004-2014 mean(%)

Rainfed Crop Yield: About 49% REDUCTION!

AVERAGE from both Seasons: ~35%

HauGiang: Projected Future Rice Yield - Summer

Results from other study areas?

Source: Figure from Wikipedia and Data from General Statistics Office of Vietnam

5. Conclusions

Conclusions (based on Hau Giang's study only)

- Significant rice production reduction of about 35% is projected in 2020-2050 period --- as rainfall amount is projected to decrease.
- Irrigation could significantly improve crop yield. However, the challenge is to find water sources.
- Planting&Growing seasons may have to shift following the changing rainfall periods.
- To consider new breed of rice cultivars which require less water consumption.
- With (1) 90% of rice export from Vietnam originated from MRD; (2) Singapore's total rice import from Vietnam is about 30%; AND (3) rice yield is expected to reduce by 35% in 2020-2050 → essential information for Singapore's policy makers in their strategic planning (Price increase and Food Security)

Acknowledgements

"This research is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise programme. The Center for Environmental Sensing and Modeling is an interdisciplinary research group of the Singapore MIT Alliance for Research and Technology."

Thank You.