

AOGS 2022

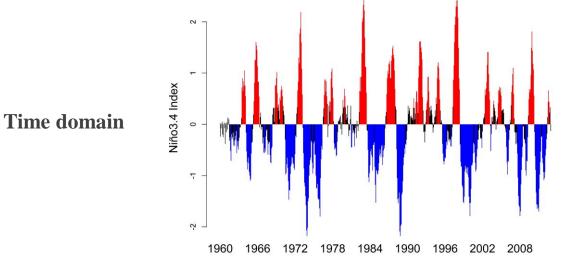
Hydrologic forecasting over long lead times: A waveletbased variance transformation approach

<u>Ze Jiang¹</u>, Ashish Sharma¹ and Fiona Johnson¹ ¹Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia

UNSW Water Research Centre

Asia Oceania Geosciences Society

Acknowledgements Australian Research Council Department of Planning and Environment

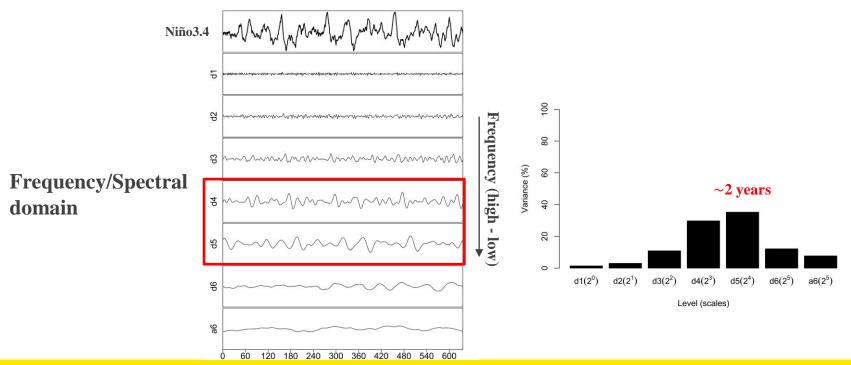


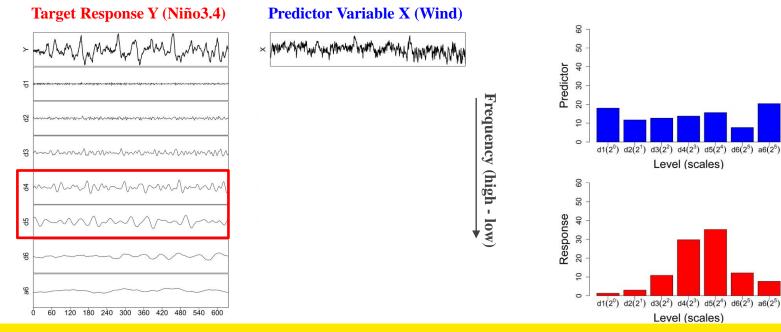
Water Research Centre

Niño3.4 martha Martha Jul Martha Martha

Frequency/Spectral domain

Frequency (high - low



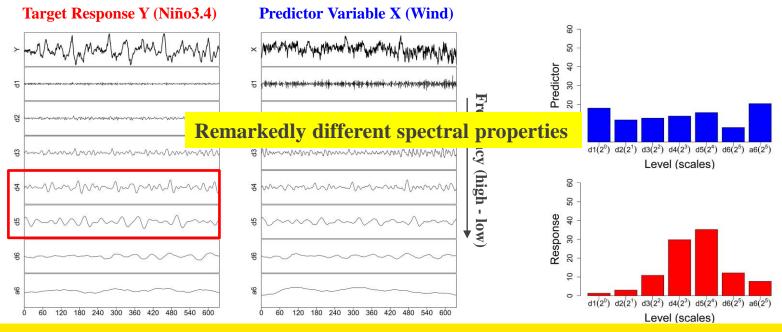


UNSW Water Research Centre

Civil and Environmental Engineering

Level (scales)

Level (scales)



UNSW Water Research Centre

The hypothesis:

If the spectrum of the predictor is similar to response, the predictive model exhibits better accuracy than otherwise.

Is there an optimal variance transformation?

Is there an optimal variance transformation?

Change predictor X to X' such that X' has a closer spectral representation to the response Y:

$$X' = \tilde{R}\alpha$$
$$\alpha = \sigma_X \tilde{C}$$

where **R** is wavelet decompositions of X, and \tilde{C} is the normalized covariance between the variable set (Y, \tilde{R}) .

$$\boldsymbol{C} = \frac{1}{n-1} \boldsymbol{Y}^{T} \, \boldsymbol{\tilde{R}} = \left[\boldsymbol{S}_{\boldsymbol{Y}\tilde{d}_{1}}, \dots, \boldsymbol{S}_{\boldsymbol{Y}\tilde{d}_{J}}, \boldsymbol{S}_{\boldsymbol{Y}\tilde{a}_{J}} \right]$$

$$RMSE_{\min} = \sqrt{\frac{n-1}{n} (\sigma_{\boldsymbol{Y}}^{2} - \|\boldsymbol{C}\|^{2})}$$

Water Resources Research

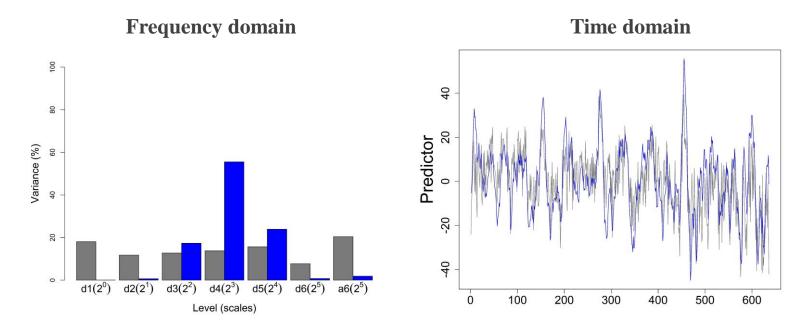
Technical Reports: Methods

Refining Predictor Spectral Representation Using Wavelet Theory for Improved Natural System Modeling

Ze Jiang, Ashish Sharma 🔀, Fiona Johnson

First published: 20 February 2020 | https://doi.org/10.1029/2019WR026962 | Citations: 9

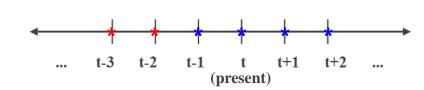
Is there an optimal variance transformation?



How do we take it to forecasting?

- DWT mathematically requires future information in the decomposition.
- Can we generalise this method to also apply in a forecasting context?

Environmental Modelling & Software Volume 135, January 2021, 104907



Maximal overlap DWT (MODWT)

A wavelet-based tool to modulate variance in predictors: An application to predicting drought anomalies

Ze Jiang ª, Md. Mamunur Rashid $^{\rm b}$, Fiona Johnson ª, Ashish Sharma ª $\stackrel{\rm a}{\sim} \boxtimes$

Wavelet System Prediction (WASP) http://www.hydrology.unsw.edu.au/software/WASP

How do we consider multiple predictors in the system?

- Variance transformation refines the predictor spectral representation individually.
- Can we generalise this method to account for existing predictors in the system?

 $X'_{VT} = g(X, Y) \qquad X'_{SVT} = g(X|Z, Y|Z)$

How do we consider multiple predictors in the system?

- Variance transformation refines the predictor spectral representation individually.
- Can we generalise this method to account for existing predictors in the system?

$$X'_{VT} = g(X, Y)$$
 $X'_{SVT} = g(X|Z, Y|Z)$

Jiang, Z., et al. (2021). "Variable transformations in the spectral domain – Implications for hydrologic forecasting." Journal of Hydrology, 603, 126816.

ENSO forecasting over long lead times

Target response: Niño3.4

Predictors: 30 predictor variables (10 predictors from each region)

Predictor variable	Region I	Region II	Region III	Depth
Zonal wind stress (m ² /s ²)	180–220E,	180–210E,	160–200E,	Surface
	4S–4N	10S-0	0–10N	
Sea surface temperature (°C)	140–160E,	140–180E,	120–170E,	Surface
	5S–5N	10S–5N	10S–5N	
Subsurface temperature (°C)	120–140E,	150–200E,	140–210E,	50, 100, 150, 200, 250,
	10S–7N	10S–7N	5–10N	300, 400, and 500 m

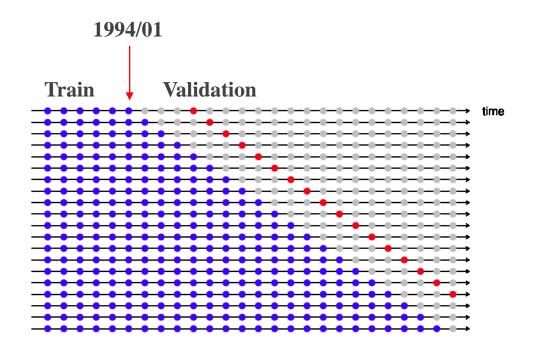
Note: This table is adapted from Petrova et al. (2019).

ENSO forecasting over long lead times

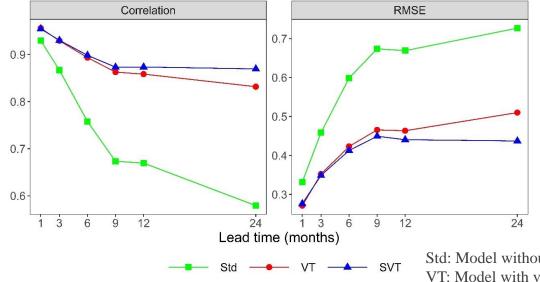
Retrospective experiment:

- Obtain the transformed predictors
- Identify the significant predictors
- Data split: 1960–1993 (train)

1994-2012 (validation)



ENSO forecasting over long lead times



- VT and SVT are better than Std, and SVT is the best among three models.
- Forecasting skill of VT and SVT model decays more slowly than Std model.

Std: Model without transforming predictors VT: Model with variance transformation SVT: Model with stepwise VT

Conclusions

- A unique variance transformation in the frequency domain ۲
- A generic method along with open-source tools
- A wide range of applications not limited to hydro-climatology

Journal of Hydrology Volume 603, Part A, December 2021, 126816

Research papers

Variable transformations in the spectral domain – Implications for hydrologic forecasting

Ze Jiang, Ashish Sharma ^Q ⊠, Fiona Johnson

AOGS 2022

Hydrologic forecasting over long lead times: A waveletbased variance transformation approach

Ze Jiang¹, Ashish Sharma¹ and Fiona Johnson¹ ¹Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia

UNSW Water Research Centre

Asia Oceania Geosciences Society

Thank you!

Email: ze.jiang@unsw.edu.au

Acknowledgements

Australian Research Council Department of Planning and Environment