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a b s t r a c t 

Detection of systematic changes in the climate system resulting from anthropogenic forcing is a critical area 

of research. Detection and attribution of hydro-climatological change has been limited by model uncertainty 

and bias as well as the poor spatial-temporal coverage of observational data. This study assesses a routinely 

adopted detection methodology and its sensitivity to model uncertainty and bias within a hydro-climatological 

context. Using a synthetic case study, we establish the sensitivity of detection approaches to the magnitude and 

consistency of trend and variance along with the length of data available. It is found that the extent of uncertainty 

(as measured by the variance) plays a critical role in changing the detection outcome. Another important factor 

is the consistency of trend between simulations and observations. A case study of soil moisture in select locations 

within Australia shows that averaging over multiple years (e.g., five years to a decade) improves the detection of 

the climate change signal as long as consistency in the trends exists. Our results also demonstrate that there are 

substantial differences in simulated trends across climate models. Therefore, even though ensemble averaging is 

effective in modulating variance, it has the risk of canceling out the signal over models with markedly different 

responses. 
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. Introduction 

Detection and Attribution (D&A) of hydro-climatological change

ue to human-induced climate changes is a significant area of re-

earch across the world ( Kaufmann and Stern, 1997 ; Min et al., 2011 ;

ondal and Mujumdar, 2015 ; Gedney et al., 2006 ; Pall et al., 2011 ;

an et al., 2015 ; Zhang et al., 2007 ). Following the definition of In-

ergovernmental Panel on Climate Change (IPCC), detection of change

s defined as the process of demonstrating that climate or a system af-

ected by climate has changed in some defined statistical sense with-

ut providing a reason for that change. Attribution seeks to determine

hether a specified set of external forcings and/or drivers are the cause

f an observed change in a specific system ( Bindoff et al., 2013 ). How-

ver, there is still considerable uncertainty about changes in the hydro-

limatological cycle under potential future warming because it is dif-

cult to separate the effects of rising greenhouse gases from multi-

ear/decadal climate variability ( Haerter and Berg, 2009 ; Stocker et al.,

013b ). Additional uncertainty is introduced through the model simula-

ions which are a vital input of D&A studies, whether these are physical,

athematical, or statistical models. 

Most D&A assessments have been conducted by comparing observed

rends to those simulated by a large number of General Circulation Mod-

ls (GCMs) ( Jones et al., 2013 ; Wan et al., 2015 ; Najafi et al., 2015 ;
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hang et al., 2007 ). There are multiple climate models available as part

f the Coupled Model Intercomparison Program (CMIP) which contain

ultiple types of simulations. For the purposes of D&A, three groups

f simulations are relevant. These are simulations driven with all rele-

ant anthropogenic and natural forcings (ALL), simulations driven with

atural forcings (e.g., solar and volcanic activity) only (NAT), and sim-

lations driven with historical anthropogenic forcings (mainly rising

reenhouse gases) only (ANT). Significant differences in the statistical

ttributes characterizing these simulations is used as the basis for most

&A approaches. The simplest of these approaches (more details to fol-

ow later) entails ascertaining the temporal trend or drift in each of

hese series and statistically ascertaining whether they represent dif-

erent population distributions. Given the uncertainty and variability

cross model simulations, model ensemble means are often used. Even

hough the mean of multi-model simulations has good skill in estimating

he climate responses to external forcings ( Stocker et al., 2013a ) and a

eliable screening method and skill scores have been used for filtering

limate models based on the quality and performance of these models

 Pierce et al., 2009 ; Johnson et al., 2011 ),the uncertainty and bias in

odel-simulated trends remains high ( Zhang et al., 2007 ). As a conse-

uence of these discrepancies in response patterns, the use of trend or

egression-based methods may lead to physically inconsistent D&A re-

ults such as negative trends when they are expected to be positive as
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er the laws of physics (such as a negative regression slope for global

urface temperature in response to rising greenhouse gases over time

 Ribes and Terray, 2013 )). 

The simplest way of fitting the model-simulated responses to ob-

ervations is to assume that the responses to different forcings are

inearly additive, so the response to any one forcing can be scaled

p or down without affecting any of the others. Additionally, climate

ariability is assumed independent of the response to external forc-

ng ( Bindoff et al., 2013 ). Under these conditions, attribution can be

xpressed as a variant of linear regression. Meehl et al. (2003) and

illett et al. (2004) have tested the linear additivity assumption and

uggested that it might hold for large-scale temperature changes but

ay not apply to hydro-climatological variables such as precipitation

 Hegerl et al., 2007 ; Hegerl and Zwiers, 2011 ; Shiogama et al., 2013 ;

hosh et al., 2012 ), nor to regional temperature changes ( Terray, 2012 ).

owever, so far non-additive approaches have not been widely used,

nd it takes a longer time for the science community to accept new

ethods especially when the current approach is simple and practical.

e also believe that there is no "right" or "wrong" approach to D&A since

t is all context-dependent when it comes to how people view errors of

 particular type ( Lloyd and Oreskes, 2018 ). 

Here, we aim to ascertain the sensitivity of a routinely adopted D&A

ethodology with the underlying linear additivity assumption to model

ncertainty and bias within a hydro-climatological context. With a com-

ination of global climate models and sophisticated statistical models

hat allow us to simulate underlying trends in a controlled environment,

e assess the reliability of the simple regression method that has been

idely used in D&A. Based on the outcomes of this assessment, we pro-

eed to demonstrate the implications of our findings in the context of

oil moisture data simulated using a range of CMIP5 GCMs, using select

ocations in Australia where interesting changes have been identified. 

The remainder of the paper is organized as follows. Section 2 reviews

he regression-based D&A methods (e.g., simple least squares, weighted

nd generalized linear regression method) along with their drawbacks

nd sources of uncertainties, given the need for a good understanding

f the fundamentals of D&A methodology and their possible sensitivity

o model uncertainty and bias investigated in the examples that follow.

n Section 3 , synthetic data is introduced to evaluate the sensitivity of

he simple least squares approach to various sources of uncertainty and

ias. Section 4 consists of a case study focusing on soil moisture change

n select locations within Australia followed by discussion in Section 5 .

e conclude with a summary of the main outcomes in Section 6 . 

. Background 

.1. Detection and Attribution 

There are three core elements in D&A studies. First, observations of

limate indicators contain spatiotemporal information. Second, an es-

imate of external forcing of the climate system (e.g., natural and/or

nthropogenic forcings) using climate models is generally taken as an

nsemble mean of forced model runs. Last, an estimate of climate vari-

bility is often derived from a physical-based model, generally ob-

ained from unforced preindustrial model runs. D&A methodologies

ave evolved to include simple non-optimal fingerprint techniques to

ore complex regression-based methods. We illustrate the philosophy

ehind the D&A methodology with the non-optimal fingerprint, and

ummarize both non-optimal and optimal fingerprints in the form of

inear regression. 

In D&A studies, empirical orthogonal function (EOF) analysis is of-

en used to study possible spatial modes (i.e., patterns) of variability and

ow they change with time. In statistics, EOF analysis is known as Prin-

ipal Component Analysis (PCA), which is also used for dimensionality

eduction. The "Optimal Fingerprint" terminology was first introduced

y Hassellmann (1979) . Regardless of non-optimal or optimal finger-

rint, the fingerprint F ( i, j ) represents a pattern of change in space, gen-
rally a function of latitude i and longitude j , characterizing the climate

ystem response X ( i, j, t ) to external forcing ( Marvel et al., 2019 ). The

ngerprint is often defined as the leading EOF (i.e., the unit-norm eigen-

ector v 1 corresponding with the highest eigenvalue 𝜆1 ) by computing

he eigenvalues and eigenvectors of a spatiotemporal covariance ma-

rix. It often results from first averaging over members of each CMIP5

istorical model ensemble and then over models ( Hasselmann, 1993 ;

arvel et al., 2019 ; Santer et al., 1995 ). The leading EOF can not only

stimate a "form" of response how the variable of interest responds to an

xternal forcing but also reduces the dimensionality of the spatiotempo-

al data by projecting it onto the fingerprint. 

Given a dataset of observations Y ( i, j, t ) or model simulations X ( i, j, t ),

e estimate the projection P ( t ) which is the amplitude of the fingerprint

n the dataset, by projecting it onto the fingerprint F ( i, j ), 

𝑃 𝑌 ( 𝑡 ) = 

∑
𝑖,𝑗 
𝑌 ( 𝑖, 𝑗, 𝑡 ) 𝐹 ( 𝑖, 𝑗)∕ 

√
𝜆1 

 𝑋 ( 𝑡 ) = 

∑
𝑖,𝑗 
𝑋 ( 𝑖, 𝑗 , 𝑡 ) 𝐹 ( 𝑖, 𝑗)∕ 

√
𝜆1 (1) 

here 
√
𝜆1 is used for normalization by the fingerprint. Physically, the

rojection P ( t ) as a function of time indicates the covariance between

he fingerprint F ( i, j ) and the observational or model data in space. The

rojection time series P ( t ) will, hence, show an upward trend if the fin-

erprint is increasingly present in the data ( Marvel et al., 2019 ). 

In the end, we compare the amplitude of fingerprint in observations

ith both amplitude of signal in different forced model runs (e.g., ALL

nd NAT forcings) by regression ( Eq. (2) ) and demonstrate that the re-

ponse patterns of alternative external forcings (e.g., NAT forcings) are

nlikely to explain the observed change. 

 𝑌 ( 𝑡 ) = 𝛽𝑖 𝑃 𝑋 𝑖 
( 𝑡 ) + 𝑢 (2)

here 𝛽 i is the scaling factors that adjusts the amplitudes of those pat-

erns, and u is noise. 

With the non-optimal detection approach summarized above, it has

een recognised that it can be cast as a regression-based problem

ith respect to generalised multivariate regression ( Hasselmann, 1997 ;

llen and Tett, 1999 ; Allen and Stott, 2003 ). The regression model has

he form 

 = 𝑿 𝜷 + 𝜺 (3) 

here vector y is a filtered version of the observations, matrix X con-

ains the estimated response patterns to the external forcings (signals)

hat are under investigation, 𝜷 is a vector of scaling factors that adjusts

he amplitudes of those patterns, and 𝜺 is noise that represents climate

ariability ( Hegerl et al., 2010 ). When the response X is noise-free, vec-

or 𝜷 is estimated with 

̂ = 

(
𝑿 

𝑻 𝑪 

− 𝟏 𝑿 

)− 𝟏 
𝑿 

𝑻 𝑪 

− 𝟏 𝒚 (4) 

here C is the covariance matrix of the noise ( Hassellmann, 1979 ;

llen and Tett, 1999 ; Mitchell, 2001 ). The most commonly used as-

umption about vector 𝜺 is that it follows a Gaussian distribution and

he associated covariance matrix C becomes an identity matrix. Thus,

caling factors 𝜷 is simplified as 

̂ = 

(
𝑿 

𝑻 𝑿 

)− 𝟏 
𝑿 

𝑻 𝒚 , (5)

hich is equivalent to the non-optimal method. In essence, the covari-

nce matrix C gives a somewhat greater weight to information in the

ow variance parts of the observations. Generally, in terms of how we

eneralize the covariance matrix C (i.e., measure the distance between

he data points and the regression line), the detection technique can be

enerally divided into three methods as outlined in Table 1 . 

It should be noted that the Simple least squares approach ( Table 1 )

s adopted generally when alternate models are expected to represent

ndependent realizations of the process, and are expected to have equal

esidual error variances. This, however, is often too constraining an as-

umption especially when the process exhibits a chaotic pattern, leading
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Table 1 

Variations of D&A regression-based methodologies. 

Covariance matrix Method 

𝐂 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 ⋯ 0 
0 1 0 ⋯ 0 
0 0 1 ⋯ 0 
⋮ ⋮ ⋮ ⋱ ⋮ 
0 0 0 ⋯ 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
Simple least squares (non-optimal) 

𝐂 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜎2 
1 0 0 ⋯ 0 
0 𝜎2 

2 0 ⋯ 0 
0 0 𝜎2 

3 ⋯ 0 
⋮ ⋮ ⋮ ⋱ ⋮ 
0 0 0 ⋯ 𝜎2 

𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
Weighted least squares (partially optimal) 

𝐂 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜎2 
1 𝜎2 

1 , 2 𝜎2 
1 , 3 ⋯ 𝜎2 

1 ,𝑛 
𝜎2 
2 , 1 𝜎2 

2 𝜎2 
2 , 3 ⋯ 𝜎2 

2 ,𝑛 
𝜎2 
3 , 1 𝜎2 

3 , 2 𝜎2 
3 ⋯ 𝜎2 

3 ,𝑛 
⋮ ⋮ ⋮ ⋱ ⋮ 
𝜎2 
𝑛, 1 𝜎2 

𝑛, 2 𝜎2 
𝑛, 3 ⋯ 𝜎2 

𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
Generalized linear regression (fully optimal) 
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𝑥𝑡 𝑡 −1 𝑡  
o the Weighted and the Generalized approaches being adopted. Under

eteroscedasticity (the residual error variances of the observations are

nequal) or autocorrelation, Simple least squares is no longer the op-

imal estimate whereas the other two estimators can be unbiased and

ore efficient ( Allen and Stott, 2003 ; Ribes and Terray, 2013 ). 

Fitting the regression model requires an estimate of the covariance

atrix C (i.e., the climate variability), which is usually obtained from

n additional, independent sample of simulated unforced variation (e.g.,

ong control simulations) because the instrumental record is too short

o provide a reliable estimate and may be affected by external forc-

ngs. However, GCMs may not simulate climate variability accurately

 Johnson et al., 2011 ), casting doubt over the estimates of C . Even with

ood estimates of C from GCMs control simulations, studies ( Wan et al.,

015 ; Santer et al., 1995 ) have showed that optimal approaches have

o clear advantages over non-optimal methods. Hence, in this study, we

ssess the sensitivity of D&A approaches to model uncertainty and bias

sing the Simple least squares approach. 

.2. Systematic biases in climate model simulations, and their implications 

or D&A 

A failure to detect a particular response includes the possibility

hat the responses are collinear or weak relative to climate variabil-

ty ( Ribes et al., 2017 ), or that the metric used to measure the change

s insensitive to the expected change ( Pachauri and Reisinger, 2007 ).

side from being able to distinguish climate variability in observations

 Hegerl et al., 2007 ; Ropelewski and Halpert, 1987 ; Mantua et al., 1997 ;

ewman et al., 2003 ; Verdon and Franks, 2006 ; Zhang et al., 2007 )

nd the selection of proper metrics, the key to assessing the reliability

f D&A methods is to understand the uncertainty and bias in climate

odels. Climate models have errors that consist of unsystematic and

ystematic components ( Teutschbein and Seibert, 2013 ). Unsystematic

odel errors occur due to the chaotic nature of the climate system and

he unconstrained nature of the GCMs simulations ( Christensen et al.,

001 ; Eden et al., 2012 ). For instance, global scale feedbacks like wa-

er vapor and cloud feedback and possible unknown feedbacks within

he climate system could contribute substantially to uncertainties on

he response patterns and magnitudes ( Ribes et al., 2017 ; Mehrotra and

harma, 2006 ). Due to uncertainties in the forcings themselves, the es-

imated responses to these external forcings fluctuate significantly. The

reenhouse gases forcing has substantial uncertainties if effective radia-

ive forcings are considered rather than radiative forcings ( Myhre et al.,

013 ). Various studies have quantified the extent of these errors, and

ttributed them to model structure, emission scenario and initialization

 Woldemeskel et al., 2016 ). The extent of these errors varies depending

n the variable of interest, with hydro-climatological variables (such as

recipitation and soil moisture) expected to exhibit greater error due
o model structure, as compared to other factors. The systematic error

omponent is commonly termed as model bias ( Teutschbein and Seib-

rt, 2013 ) and is a result of a range of various factors. They include the

oarse scale of the GCMs, incomplete model structures, feedback loops

ncluding the albedo and land-atmosphere interactions and in the case of

recipitation the parameterisation of clouds and convection ( Allen et al.,

002 ; Haerter et al., 2011 ; Masson and Knutti, 2011 ; Randall et al.,

007 ; Sun et al., 2006 ; Maurer et al., 2013 ; Mehrotra et al., 2004 ). 

A number of bias correction methods have been developed to ad-

ress these biases prior to D&A exercises, including scaling or quantile

atching, empirical-statistical correction ( Gobiet et al., 2015 ), nesting

ogic-based approaches ( Johnson and Sharma, 2012 ), and multivariate

ias correction models ( Mehrotra and Sharma, 2015 ). Bias correction is

opular because it can be applied directly and easily to climate model

utputs, and is able to correct the GCMs simulations for the parameters

f interest ( Johnson and Sharma, 2012 ). On the other hand, there is a

uspicion that bias correction lacks a sound physical basis ( Ehret et al.,

012 ) since it does not necessarily preserve the dynamic relationships

etween different variables ( Haerter et al., 2011 ). The fundamental as-

umption of these methods is that if the biases can be removed from

he model simulations, then the corrected GCMs outputs will properly

epresent the expected responses in the climate system ( Nahar et al.,

017 ). However it has been found that bias correction can sometimes

lter the climate change signal, which in some cases is considered un-

esirable ( Hagemann et al., 2011 ) and in others is considered beneficial

or example by improving model consensus on the direction of changes

 Gobiet et al., 2015 ; Johnson and Sharma, 2015 ). Therefore, this is a

trong assumption and we should be very cautious when making an in-

erence. 

In a nutshell, where models are used in D&A, the assessment of model

ncertainty and bias should be considered. Bias correction is a powerful

ool to remove model biases prior to D&A analysis, and it should be

pplied with great care. 

. Synthetic data 

The aim of the first part of the study is to formulate realistic time

eries representing observed and model-simulated sequences such that

he impact of known uncertainties and biases can be assessed on the

&A outcomes. The synthetic series are formulated to broadly repre-

ent the types of biases seen in hydro-climatological data. The synthetic

ase study is followed by an application to gridded soil moisture data in

ustralia, described in the next section. 

The base model for synthetic time series generation is the random

alk with drift model ( Shumway and Stoffer, 2011 ) given by 

 = 𝛿 + 𝑥 + 𝑤 (6)
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Fig. 1. A synthetic example: (a) Generated observations (black line) y and the true trend (dashed black line) in observations, simulated response to ALL forcings 

(red line) x 1 , and simulated response to NAT forcings (blue line) x 2 ; (b) The comparison between observations and ALL forcings case by regressing y on x 1 (red 

short line with error bar, 95% confidence interval); the comparison between observations and NAT forcings case by regressing y on x 2 (blue star with error bar, 95% 

confidence interval). In each figure, the two subplots represent the cases with ( 𝜌 = 0.6) or without ( 𝜌 = 0) autocorrelation in the white noise. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

f  

w  

𝛿  

c  

i  

d  

s

𝑥  

 

t  

a  

e  

v  

t  

𝜌  

c  

v  

g

𝑦

𝑥

𝜀

 

 

s  

t  

F  

p  

a  

e  

t  

f  

s  

i  

t  

a

 

b  

r  

u  

t  

a  

w  

(

v  

t  

(  

I  

v  

w  

p  

a  

a  

t  

n  

l  

t  

c

 

i  

I  

G  

v  

f  

s

 

c  

f  

s  

c  

s  

d  

s  

i  

v  

e  

i  
or t = 1, 2, ..., n with initial condition x 0 = 0, and where w t is Gaussian

hite noise, 𝑤 𝑡 ∼ 𝑁(0 , 𝜎2 
𝑤 
) . The constant 𝛿 is called the drift, and when

= 0, the Eq. (6) is called simply a random walk. The term random walk

omes from the fact that when 𝛿 = 0, the value of the time series at time t

s the value of the series at time t- 1 plus a completely random movement

etermined by w t . Note that we may rewrite the Eq. (6) as a cumulative

um of white noise variates. That is, 

 𝑡 = 𝛿𝑡 + 

𝑡 ∑
𝑗=1 

𝑤 𝑡 . (7)

From the rewritten Eq. (7) , the drift 𝛿 in the model can be seen as

he slope (or trend) of the time series. As previously described, there

re three core elements in D&A studies, consisting of observations y ,

stimated response pattern to external forcing x , and estimated climate

ariability 𝜺 . Also, to assess the effects of different degrees of persis-

ence in the climate system, two different autocorrelations ( 𝜌 = 0 and

= 0.6) was introduced in Gaussian white noise using a first-order auto-

orrelation (AR(1)) model to replace the cumulative sum of white noise

ariates in the Eq. (7) . To summarize, in this synthetic analysis, they are

enerated by 

 𝑡 = 𝛿𝑜𝑏𝑠 𝑡 + 𝜀 𝑡 𝑤 𝑡 ∼ 𝑁(0 , 𝜎2 
𝑜𝑏𝑠 

) 
 𝑡 = 𝛿𝑠𝑖𝑚 𝑡 + 𝜀 𝑡 𝑤 𝑡 ∼ 𝑁(0 , 𝜎2 

𝑠𝑖𝑚 
) 

 𝑡 = 𝜌𝜀 𝑡 −1 + 𝑤 𝑡 

. (8)

To simplify the synthetic case, we assume the spatial structure of the

ignals does not change over time and only one grid cell is considered,

hus the generated data is equivalent to projected and normalized data.

ig. 1 presents an example of the synthetic dataset to illustrate the im-

lementation in this statistical model, with 𝛿obs = 𝛿0 = 0.01, 𝜎obs = 𝜎0 = 1

nd n = 500 for both simulated "observations" and "response pattern to

xternal forcing". We compare observations y with both response pat-

erns to ALL ( 𝛿sim 

= 0.01 and 𝜎sim 

= 0.5) and NAT ( 𝛿sim 

= 0 and 𝜎sim 

= 0.5)

orcings x by regression. In this synthetic dataset, it is noted that the ob-

erved changes are unlikely to be explained by NAT, given correspond-

ng scaling factor is round zero. However, the estimated response pattern

o ALL forcings captures the change in observations well, given associ-

ted scaling factor is close to one. 

To assess the sensitivity of D&A methods to model uncertainty and

ias, we divide the experiment into four groups, varying drift 𝛿, drift
atio 
𝛿𝑠𝑖𝑚 

𝛿𝑜𝑏𝑠 
, noise ratio 

𝜎𝑠𝑖𝑚 

𝜎𝑜𝑏𝑠 
and sample size n respectively. For both sim-

lated "observed" and generated "ALL forcings model" time series, all

hree statistics ( 𝛿, 𝜎
𝑤 

and n ) were varied. The Group-I series were gener-

ted varying drift 𝛿 ( 𝛿sim 

= 𝛿obs ) ranging from 0.1 𝛿0 to 1.5 𝛿0 , the Group-II

ere generated with inconsistent drift 𝛿 between ALL and observations

fixed drift of observations as 𝛿obs = 𝛿0 ) as indicated by drift ratio 
𝛿𝑠𝑖𝑚 

𝛿𝑜𝑏𝑠 

arying from 0.1 to 1.5, the Group-III series were generated by altering

he white noise standard deviation ratio 
𝜎𝑠𝑖𝑚 

𝜎𝑜𝑏𝑠 
ranging from 0.01 to 1.5

fixed standard deviation of observations as 𝜎
𝑜𝑏𝑠 

= 𝜎0 ), and the Group-

V series were generated using the base model with different length n

arying from 10 to 1000. Similarly, another set of four group series

as generated by replacing ALL with NAT forcing scenario using sim-

le random walk (i.e., 𝛿sim 

= 0) model to simulate its response. Group-I

nd Group-II were used to investigate the influences of trend magnitude

nd consistency on signal detection. Group-III was used to investigate

he influences of model uncertainty (as measured by variance) on sig-

al detection. Group-IV was used to investigate the influence of series

ength on the power of the simple regression method. The AR(1) varia-

ion was introduced to study the sensitivity of the D&A method to serial

orrelation. 

Since the true signal in the synthetic series are clearly known and

dentical in simulated ALL forcings case in Group-I, Group-III and Group-

V, the theoretically derived true scaling factor 𝛽 equals one, while in

roup II, the theoretically derived true scaling factor 𝛽 equals the in-

erse of their ratio ranging from ∼0.67 to 10. Since the drift in NAT

orcings case is zero, the theoretical true value of scaling factor 𝛽 for

ynthetic NAT forcings case is always zero. 

As shown in Fig. 2 , the estimated scaling factors 𝛽 of NAT forcings

ase are all near the theoretical true value of zero. The simulated ALL

orcings case provides guidance on the issues that may hamper D&A

tudies. The Group-I and Group-II results show how the magnitude and

onsistency of trend influence the signal detection. When the trend is

trong and consistent with the observed trend, it is easier to correctly

etect the change ( 𝛽 ≈ 1). However, when the signal is weak and incon-

istent with observations, the estimated scaling factors tend to become

mprecise. The Group-III results show the presence of noise (e.g., climate

ariability in observations and uncertainty in model simulations) influ-

nces the signal detection, and it suggests that reducing the variance

n model simulations will lead to more precise estimates of the scaling
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Fig. 2. Sensitivity analysis of the D&A method corresponding with four groups 

of synthetic series with the black dashed line indicating the theoretical true val- 

ues of scaling factors 𝛽. (Group I): Varying trend in ALL forcings simulations 

consistent with observations; (Group II): Varying trend in ALL forcings simula- 

tions inconsistent with observations; (Group III): Decreasing variance in simu- 

lations; (Group IV): The impact of data length. In each figure, the columns give 

the synthetic ALL forcings case and NAT forcings case; the rows represent the 

cases with or without autocorrelation in the white noise. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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actors. Group-IV shows that signals are easier to detect when the time

eries are long. 

What is most notable about these results are the cases where 𝛽 devi-

tes from 1. This appears most clearly when the drift ( 𝛿) is low (less than

.007), where the drift ratio is not equal to one (most clearly when this

atio is less than unity), and when the ratio of the error standard devia-

ions is greater than 0.25. This implies, for detection to be successful, one

eeds statistically significant trends that are consistent with observed

resulting in a drift ratio of 1), and, most importantly, model residuals

hat exhibit 25% of the variability exhibited through observations. Sce-

arios where these conditions can be met within a hydro-climatological

etting may be difficult to identify. This issue is investigated further us-

ng soil moisture simulations in the real case study presented next. 

. Soil moisture change detection case study 

Understanding the behavior of soil moisture is essential due to its

ey role in the hydrological cycle ( Owe et al., 2008 ). Soil moisture
nfluences rainfall-runoff processes, infiltration, groundwater recharge,

nd constrains evapotranspiration and photosynthesis ( Holgate et al.,

016 ). Thus, it is directly involved in water and energy exchanges be-

ween the land, vegetation and the atmosphere ( Taylor et al., 2012 ).

s an antecedent condition of various environmental forecasts, it has a

ange of applications including assimilation into land surface models for

umerical weather forecasting ( Dharssi et al., 2011 ), national water ac-

ounting ( Viney et al., 2014 ), agricultural planning and bushfire control

 van Dijk et al., 2013 ; van Dijk et al., 2015 ) as well as flood prediction

 Wanders et al., 2014 ). 

The biggest challenge of soil moisture study is the sparsity of in situ

bservations. To overcome this difficulty, soil moisture information can

lso be obtained from satellite remotely sensed estimates and hydro-

ogical/land surface model predictions. In situ measurements are at the

oint scale and cover limited areas with hourly or sub-daily time steps.

emotely sensed soil moisture estimates have a larger spatial scale (tens

r hundreds of square kilometers) and are available from a growing

umber of satellites on daily or longer basis. However, there are con-

erns with the representativeness of these measurements and there is no

ong time series available. The accuracy of modeled soil moisture varies

ignificantly depending on the accuracy and spatial coverage of the in-

ut precipitation and soil hydraulic properties data, in addition to the

odel structure and purpose. Previous studies have compared these data

ithin Australia and showed that the Australian Water Resource Assess-

ent landscape model (AWRA-L), a grid-based distributed biophysical

odel of the water balance between the atmosphere, soil, groundwa-

er and surface water stores ( Viney et al., 2015 ), yields a strong agree-

ent with in situ observations ( Holgate et al., 2016 ). Hence, we adopted

WRA-L soil moisture as a surrogate of observed soil moisture for this

&A case study. AWRA-L estimates a daily running water balance on a

.05°×0.05° grid across Australia from 1911 to present. 

The model-simulated monthly soil moisture is taken from CMIP5

rchive to estimate soil moisture responses to ALL and NAT forcings.

n total, four GCMs are selected to carry out the D&A analysis, as sum-

arized in Table 2 . These GCMs were chosen due to the availability of

oil moisture simulations and their larger number of initial condition

nsemble members. As is common practice in this field, the ensemble

ean of multiple model realisations has been used meaning that the

ncertainty resulting from ensemble members of different models has

ot been considered in this study. This is firstly because, as shown in

able 2 the same number of realizations is not available for all GCMs,

hus it is hard to compare across GCMs. Secondly, the variation across

ealizations of a single GCM is generally much smaller than the varia-

ions in the entire multimodel ensemble ( Johnson et al., 2011 ) and can

hus be neglected for the purposes of this investigation. Hawkins and

utton (2009) also suggest that the model structure plays a more im-

ortant role in model uncertainty rather than the model realizations of

ifferent initial conditions. More importantly, no weighting or screening

s applied across models ( Bhowmik et al., 2017 ), which ensures that the

verage is not dominated by any model in CMIP5, and the result should

ive us a common response ( Marvel et al., 2019 ). 

Due to the differences in the grid resolution between AWRA-L and

elected GCMs, all the data were re-gridded to 2.5°×2.5° over Australia,

sing weighted area interpolation for the AWAR-L simulations and bilin-

ar interpolation for the GCMs. Anomalies of annual, non-overlapping

ve-year and decadal averages were computed from 1911 to 2000. 

Two regions in Australia were investigated, one in Northern Aus-

ralia which is expected to have increasing soil moisture trends

 𝛿obs = 0.02383) due to increasing rainfall, and the other one in South-

est Australia that experienced decreased trends ( 𝛿obs = − 0.0022) due

o the strong decreases in available water in this region over the last

hree to four decades ( CSIRO and Bureau of Meteorology, 2016 ). 

Fig. 3 shows the time series of soil moisture from AWRA-L and four

CMs at two grid points in these two regions. The study locations were

hosen to illustrate both significant trends as well as the difference

n factors between the ALL and NAT forcings model simulations. The
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Table 2 

List of models, variables, experiments and grid resolution for this analysis. 

Model Variable name Long name (water 

content at top 10 cm) 

Grid size 

(latitude × longitude 

degree) 

No. of model realizations Control simulation 

(years) 
ALL 

simulation 

NAT 

simulation 

CSIRO-Mk3.6.0 

mrsos 
Moisture in upper 

portion of soil column 

1.865 × 1.875 10 10 500 

GFDL-CM3 2 × 2.5 4 3 500 

GISS-E2-R 2 × 2.5 6 5 3175 

IPSL-CM5A-LR 1.89 × 3.75 6 3 1000 

AWRA-L szsm Upper soil moisture 0.05 × 0.05 – – –

Fig. 3. Time series of the annual soil moisture from AWRA-L (green line, given as OBS and indicated by square) and four GCMs (colour lines) and their ensemble 

(red line) including ALL (indicated by circle) and NAT (indicated by triangle) forcings model at two grid points in two regions: (a) Two grid points (black box) in 

two study regions, Northern Australia (brown colour) and Southwest Australia (gold colour); (b) Time series of grid point in Northern Australia; (c) Time series of 

grid point in Southwest Australia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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nsemble time series is the mean of all the four GCMs simulations. The

agnitude of the trend in all GCM simulations and their consistency (as

easured by trend ratio) relative to observations at two grid points in

hese two regions are given in the table below. It is noted that there are

ubstantial differences of simulated mean soil moisture between climate

odels. Differences in climate change patterns, the diversity of model

oil schemes and soil and vegetation parameterizations in each model

ontribute to the difference of simulated soil moisture ( Orlowsky and

eneviratne, 2013 ; Berg et al., 2017 ). 

Detection analysis was carried out at these two grid points. Fig. 4

hows the detection result of the grid point in Southwest Australia for

ach GCM and their ensemble average. As per the synthetic data anal-

sis, when the variance is reduced by temporal averaging, the trend

s generally easier to detect since the signal-to-noise ratio is enhanced.

he GISS model performs well even at the annual time scale and further

emporal averaging does not provide great improvements. However, for

SIRO and IPSL the signal is better detected (scaling factors larger than

ero) by taking longer averaging periods. The climate model GFDL per-

orm poorly since it has an inconsistent trend with observed soil mois-

ure, seen in Table 3 . Importantly, their ensemble seems to be the best

xample of illustrating the implication of variance modulation. The de-
ection outcome improves gradually over longer averaging periods. It is

nown that taking ensemble mean is a way to further reduce the vari-

nce of all the model simulations. 

Fig. 5 shows the results of the analysis for Northern Australia, and it

mphasizes how the consistency of trend influences the D&A outcome.

s per the synthetic data analysis, given that the trend is weak and in-

onsistent with observations, the estimated scaling factors tend to be-

ome imprecise. According to Table 3 , compared with observations, the

ISS has the opposite trend, and their ensemble average has the weakest

rend. Importantly, compared to the southwest region, the trends of all

CMs in the northern region are significantly inconsistent with obser-

ations. Thus, the estimated scaling factors in the northern region have

arger confidence intervals (note that in Fig. 5 the y -axis limits are wider

han the y -axis limits in Fig. 4 ). Model GISS has negative scaling factors

n ALL forcings case because of its opposite trend relative to the observed

oil moisture trend. Their ensemble has the largest confidence interval

ue to its lowest trend consistency. As variance modulation has been ap-

lied in both northern and southwest region, the analysis suggests that

ariance is not the only factor that affects D&A performance but also the

onsistency of trend. With inconsistent trends between simulations and

bservations, modulating variance may lead to high uncertainty in D&A
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Fig. 4. Detection analysis in the grid point in Southwest Australia, and the error bars are the 95% confidence interval: (a) D&A analysis with the annual data; (b) 

D&A analysis with the five-year average data; (c) D&A analysis with the decadal average data. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Table 3 

The magnitude and consistency of trend in all GCMs relative to observations. 

Region Northern Australia Southwest Australia 

GCMs Trend ( 𝛿sim ) Trend Ratio ( 𝛿obs / 𝛿sim ) Trend ( 𝛿sim ) Trend Ratio ( 𝛿obs / 𝛿sim ) 

ALL 

CSIRO 0.00251 9.48 − 0.0010 2.27 

GFDL 0.00399 5.97 0.0007 − 3.11 

GISS − 0.00767 − 3.11 − 0.0017 1.32 

IPSL 0.00125 19.13 − 0.0031 0.70 

Ensemble 0.00002 1118 − 0.0013 1.73 

NAT 

CSIRO 0.00224 10.65 0.0002 − 12.42 

GFDL − 0.00005 − 473.58 0.0001 − 38.12 

GISS − 0.00018 − 130.48 0.0039 − 0.56 

IPSL 0.00005 475.82 0.0013 − 1.71 

Ensemble 0.00051 46.39 0.0014 − 1.62 
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nalysis. Taking ensemble averaging is a way of reducing variance over

ultiple simulations, but it also has the risk of canceling out the signal

ver models with markedly different responses as given here. Thus, the

&A outcome totally changes. 

It should also be pointed out that the results above are largely con-

istent with the synthetic case study presented in the previous section.

or instance, the estimated mean scaling factor is close to one in ALL

orcings case while for the case of NAT forcings the estimated scaling

actor is distributed around zero. The magnitude of the trends is smaller

han 0.007 and drift ratio is considerably different from 1 in ALL forc-

ngs case. In terms of NAT forcings case, when the standard deviation

r trend of simulated data is much smaller than that of observations, its

caling factor might be far away from zero (including both negative and

ositive), which is shown in the synthetic case of Group II and III (note

hat in Group II the x -axis limits are wider than the x -axis limits of Group

II). These observations are loosely consistent with what could be ob-

erved with other hydro-climatological variables such as precipitation,
 a  
lthough trends for temperature derived variables (such as evaporation)

re likely to be more significant. 

. Discussion 

.1. Use of variance stabilization strategies in previous D&A applications 

In past hydro-climatological D&A applications, a majority of stud-

es have applied averaging over time or ensemble means of multiple

imulations for reasons that are apparent from the synthetic test results

resented before. Jones et al. (2013) and Najafi et al. (2015) both at-

ributed the temperature variations to human-induced greenhouse gases

hrough averaging using the decadal mean and five-year mean, respec-

ively. Zhang et al. (2007) and Wan et al. (2015) investigated the an-

hropogenic impact on northern high-latitude precipitation and used

ve-year mean precipitation anomalies. Willett et al. (2007) identified

 significant global-scale increase in surface specific humidity that is at-



Z. Jiang, A. Sharma and F. Johnson Advances in Water Resources 134 (2019) 103430 

Fig. 5. Detection analysis in the grid point in Northern Australia; the error bars are the 95% confidence interval, and if there are no error bars shown, it means the 

confidence intervals are beyond the maximum or minimum value of y -axis: (a) D&A analysis with the annual data; (b) D&A analysis with the five-year average data; 

(c) D&A analysis with the decadal average data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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ributable mainly to human influence using non-overlapping three-year

eans. All the studies used the ensemble mean of the GCMs available for

he variables of interest. It is clear that by averaging over time and/or

ultiple ensemble members we can filter out the seasonal, interannual

ariations and/or multiple year phenomena and improve the potential

limate change signal-to-noise ratio. Additionally, the argument that dif-

erent climate model simulations offer time synchronicity (even though

hey share only a common initialization and anthropogenic forcings) is

ade more tenable when the time averaging extends to decadal time

cales. However, given the influences of variance reduction as demon-

trated in our synthetic experiments, one questions whether the conclu-

ions drawn are an artifact of this reduction or a genuine signal present

cross models. One needs to be especially careful of the fact that vari-

nce modulation can lead to low precision when the simulated trend is

ignificantly different from the observed trend, something that occurs

ften even across multiple datasets of the same hydro-climatological

ariable ( Anabalón and Sharma, 2017 ). 

.2. Implications of variance stabilization for other hydro-climatological 

ariables 

The chaotic nature of many hydro-climatological variables will have

 significant impact on the D&A studies and the smoothing and filter-

ng method used to pre-process the data also plays an important role.

or instance, Zhang et al. (2007) and Wan et al. (2015) not only used

ve-year mean precipitation anomalies at temporal scale but also aver-

ged rainfall over a much larger spatial domain compared with original

CMs grid resolutions. They found that with different spatial config-

rations averaging over one, two, three and six sub-regions, the non-

ptimal method is able to provide consistent detection outcomes. How-

ver, when averaging over short time periods (e.g., using 3-year or 1-

ear and half-year means), it fails to detect NAT. Longer averaging pe-

iods including 8-year and 10-year means precipitation anomalies led
o similar results to those of 5-year mean. These results suggest that

he detection method is not sensitive to the spatial resolution, however

dentifying an optimal temporal moving window is critical and gener-

lly longer moving windows of precipitation tend to give better results.

s discussed earlier in Section 2 , GCMs share a number of sources of un-

ertainty and bias such as numerical approximations, a limited descrip-

ion of geophysical fields, and parameterization of physical processes

 Saini et al., 2015 ). Rainfall process is a complex physical process at lo-

al scale, thus it is parameterized in GCMs to replace processes that are

oo small-scale or complex to be physically represented in the model.

oil moisture, particularly surface zone soil moisture, largely depends

n temperature, precipitation as well as soil hydraulic properties. Hence,

t also has high temporal and spatial variability, and the effect of aver-

ging over a larger domain and temporal period is unknown since the

and cover and soil types can differ significantly. 

.3. Possible ways forward 

To detect subtle changes and account for the various sources of un-

ertainty and bias in climate models, D&A methodologies have evolved

radually. So far, the priority of the D&A methods has been to as-

ess change over a short period of time (e.g., 30 to 50 years) mainly

ue to the limited observational records, especially in hydrology. How-

ver, this focus on temporal trends may be the issue of the current

&A methodology. Some studies approach this issue from a differ-

nt angle. For instance, direct atmospheric carbon dioxide (CO 2 ) ef-

ects on plant transpiration were identified by Field et al. (1995) , and

edney et al. (2006) also pointed out that the increase of continental

unoff trend through the twentieth century is consistent with a sup-

ression of plant transpiration due to CO 2 -induced stomatal closure.

herefore, a possible way forward in D&A applications is to confirm

he presence or absence of temporal change with corresponding change

ith reference to an alternate variable such as CO or equivalent. While
2 
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he choice of this variable may depend on the process being studied,

uch a framework could hold greater promise than the alternatives used

urrently. The framework could also include the option of global sensi-

ivity analysis (GSA), attributing the uncertainty of the D&A outcome

o various sources of model uncertainty and bias as considered here

 Sheikholeslami et al., 2019 ). This could assist in ensuring that the vari-

ble selected presents a stable detection outcome across multiple climate

odels. 

. Conclusions 

This study assesses the sensitivity of a routinely adopted detec-

ion methodology to model uncertainty and bias within a hydro-

limatological context. Several inferences can be drawn from the results

resented in our study. The analysis of synthetic series indicates that

he extent of uncertainty (as measured by the variance) plays a criti-

al role in changing the detection outcome in any hydro-climatological

xperiment conducted. An additional factor that contributes equally to

he outcome is the consistency in the sign and magnitude of the trend

etween simulations and observations. As hydro-climatological simula-

ions drawn from climate models exhibit considerable uncertainty due

o the uncertainty associated with precipitation simulations, our assess-

ent used soil moisture simulations from multiple models with loca-

ions identified to help illustrate the main findings noted above. For the

ase study of soil moisture in Australia, taking multiple years (e.g., five

ears) or decadal averaging is found to improve the detection of the

limate change signal given that there is a high degree of consistency

n the trend between simulations and observations. On the contrary,

ith inconsistent trends between simulations and observations, mod-

lating variance may lead to high uncertainty in D&A analysis. Hence,

ven though averaging over larger temporal moving windows of climate

ariables of interest tends to give better detection outcome, it could fail

t some cases as given here. Also, our results demonstrate that there are

ignificant discrepancies among various climate models with markedly

ifferent responses. Thus, taking ensemble averaging, often adopted to

nsure the response is not dominated by any model in CMIP5, may result

n canceling out the climate change signal. 

In closing, we argue that blind use of existing D&A approaches with

pplications to hydro-climatological problems can lead to erroneous

onclusions. Given the influences of variance reduction as demonstrated

n our synthetic experiments, whether the conclusions drawn are an ar-

ifact of this reduction or a genuine signal present across models is in

oubt. It is essential to be especially careful of the fact that variance

odulation can lead to low precision when the simulated trend is sig-

ificantly different from the observed trend. Before any such applica-

ion, it is recommended users ascertain the magnitude of the simulated

rend across modeling scenarios, allowing assessments of the consis-

ency in the sign of individual trends, as well as the overall variabil-

ty exhibited. Following this, a variance stabilization strategy should be

mployed to create greater consistency in trends, and a variance that

s suitably reduced taking into account the sample data length in use.

hile the above approach will result in clearer D&A assessment out-

omes for any variable of interest, we also feel the assessment should

nclude additional variables and spatial locations where one would ex-

ect a consistency in the outcome as per physical reasoning and obser-

ational data. The above steps may reduce the mis-detection of change

n hydro-climatological simulations, increasing confidence in mitigating

ctions that may be under consideration. 
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