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A B S T R A C T   

This work presents an open-source tool to predict natural system responses by transforming the frequency 
spectrum of predictor variables to create a response that better resembles observations. The R package, namely 
WAvelet System Prediction (WASP), is based on a discrete wavelet transform (DWT)-based variance trans-
formation method. We further introduce the maximal overlap DWT (MODWT)-based variance transformation 
which allows the method to be used in forecasting applications. We also develop the method to include an 
unbiased estimator that mitigates the well-known issue of edge effects in wavelet transforms. The predictive 
model in the method is a k-nearest neighbor (knn) approach. The main functionalities of the software include: (1) 
transforming the system predictors, (2) identifying significant predictors corresponding to the response, (3) 
predicting target response using the knn. Results of predicting sustained drought anomalies across Australia show 
clear improvements in predictive skill compared to the use of untransformed predictors.   

1. Introduction 

A regression model describes the relationship between a system 
response and a finite set of predictor variables using an assumed 
modelling form (linear or nonlinear). Approaches can range from simple 
regression models using a range of physically justifiable predictor var-
iables (Hertig and Tramblay, 2017) to those where more complex 
transformations including rotations are adopted (Jiang et al., 2019; 
Ndehedehe et al., 2016). Differing spectral attributes in a response and a 
system predictor can complicate specifying the system-prediction 
model. We present here an approach that addresses this difficulty by 
optimally transforming each predictor variable to better characterise the 
spectrum of the response being modelled. The underlying idea behind 
the approach here is to improve the modelling of natural systems where 
the potential predictor variables vary at time scales that differ from 
those of the plausible response. For example, in hydrology, daily pre-
cipitation is used to predict catchment streamflow. However, attenua-
tion from catchment storage means that at short time-scales the 
variability of streamflow is substantially dampened compared to rain-
fall. Thus conventional regression modelling approaches can have dif-
ficulties in characterising this differing variability and formulating a 
relationship (Rashid and Beecham, 2019). Although the approach is 

generic and can be used for any natural system model, our specific focus 
is on hydro-climatological systems. An example of such a prediction 
problem is the need to assess changes to natural systems due to climate 
change. In this case, Earth System Models and/or General Circulation 
Models (GCMs) provide predictors that can be used to model future 
changes in hydrological variables. 

Alternatives to transfer the modelling problem into the frequency 
domain include methods such as Fourier and wavelet transforms. Our 
approach uses wavelet theory to formulate an optimal model of the 
system to improve the assessment of changes into the future. The 
wavelet transform (WT) is adopted in the approach to avoid loss of 
temporal information when transforming to the frequency domain using 
a Fourier transform (Daubechies, 1990; Strang, 1996; Torrence and 
Compo, 1998). The WT can decompose the original time series into 
separate large-scale (slowly changing, low frequency) and fine-scale 
(rapidly changing details, high frequency) time series. A number of 
models based on frequency domain analysis have been proposed 
recently to simulate and predict the variability in the response (Fahimi, 
Yaseen, & El-shafie, 2017; Nguyen et al., 2019; Quilty et al., 2019; 
Rashid et al., 2018; Sang, 2013). Most of those applications directly use 
the decomposed time series to forecast the target response (Quilty and 
Adamowski, 2018; Rashid et al., 2016). Jiang, Sharma, and Johnson 
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(2020) proposed a new approach by using the decomposed time series to 
reconstruct a new set of predictor variables that can explain maximal 
information in the response. They showed that this approach can 
significantly improve the performance of the regression model, when 
applied firstly to synthetic data and a drought index downscaling case 
study at fifteen rainfall gauges in Sydney, Australia. However, the 
original method is limited to prediction problems where the future state 
of the predictors is “known”, which is due to the mathematical proper-
ties of the discrete wavelet transform (DWT). If a forecasting model is 
required then DWT is not suitable because this wavelet transform re-
quires future information (which is not available in a forecasting setting) 
to predict the target response (Du et al., 2017; Quilty and Adamowski, 
2018). To address this issue, other wavelet transformations can be used 
to implement the variance transformation, including the maximal 
overlap DWT (MODWT) and à trous algorithm (AT). In this case, DWT 
can be replaced with MODWT or AT, which have no dependence on 
future information (Nason, 2008; Quilty and Adamowski, 2018). 
Therefore, we have included the MODWT and AT based variance 
transformation into the WASP R-package. Alternatively, when consid-
ering climate change projections, the DWT forecasting problem is 
overcome because reliable future projections of the predictors are 
available from GCMs although the target response is unknown or its 
projection is not reliable as shown by Rashid et al. (2018) and Fowler 
et al. (2007). 

Another issue in using wavelet-based methods in real-world appli-
cations is the edge effects resulting mainly due to limited sample sizes, 
also known as the error due to the boundary condition that is associated 
with wavelet decompositions, including wavelet and scaling coefficients 
(Percival and Walden, 2000). However, there are ways to reduce the 
effects of boundary bias in wavelet transformations. An estimator 
excluding the boundary coefficients is regarded as an unbiased wavelet 
variance estimator (Cornish et al., 2006). This logic can be applied to the 
proposed variance transformation method, which leads to an unbiased 
variance transformation. Thus, the methodological contributions of this 
study are to: (1) generalise the wavelet-based variance transformation 
method to allow it to be applied in forecasting problems and (2) develop 
an unbiased variance transformation. This substantially broadens the 
application of the proposed method across a wide range of systems 
beyond the simplified illustrations in Jiang et al. (2020). 

The approach outlined above is embodied in the WAvelet System 
Prediction (WASP) R-package, and it consists of three key functions. The 
first function finds the optimal variance transformation for each pre-
dictor variable of interest, reconstructing a new predictor with compli-
mentary spectral attributes to the predictand. The second function 
identifies significant reconstructed predictors using partial informa-
tional correlation (PIC). PIC is used to measure the dependence between 
a given response and the reconstructed new predictor conditioned to 
pre-existing predictor(s) (Sharma, 2000; Sharma and Mehrotra, 2014). 
The last function is the predictive model, which is a k-nearest neighbor 
(knn) estimator using a kernel regression function (Lall and Sharma, 
1996; Sharma et al., 1997). An additional contribution here is that the 
knn estimator has been modified to better allow for extrapolation. 

In this study, we implement the MODWT-based and unbiased vari-
ance transformation in the R-package WASP and evaluate it on a large 
scale of hydro-climatological system. For instance, sustained droughts 
are natural hazards associated with a range of climatic factors such as 
low precipitation and high temperatures and potential evapotranspira-
tion (Sheffield, 2011). These climatic factors are in turn affected by large 
scale climate teleconnections which vary over periods of years to de-
cades (e.g., El Niño Southern Oscillation and India Ocean Dipole) 
(Mishra and Singh, 2010), as well as long-term trends from anthropo-
genic climate change (Dai, 2013; Sheffield and Wood, 2008). Thus, 
drought is a result of the interactions of a large number of variables all of 
which have very different spectral properties. Here the variance trans-
formation method is demonstrated by modelling and predicting sus-
tained drought anomalies for Australia as represented by the 

Standardized Precipitation Index (SPI). 

2. Methodology 

2.1. MODWT-based variance transformation 

In this section, we first introduce the original DWT-based variance 
transformation and then extend it to include the MODWT-based vari-
ance transformation. Full details and derivation of the variance trans-
formation are provided in Jiang et al. (2020). A summary of the 
important steps is provided here. Consider a set of n paired centred (i.e., 
with mean of zero) observations of the predictor variable X and the 
response variable Y, i.e., (x0, y0), …, (xn− 1, yn− 1). First, the signal X is 
decomposed into a vector of coefficients matrix W = [D1,…,DJ,AJ] with 
a dimension of n × 1 using the DWT. The coefficients matrix is then 
reconstructed into a matrix of frequency components R = [d1,…, dJ, aJ], 
and the associated variance structure of these sub-time series is given by 
I = [σd1 ,…, σdJ , σaJ ]

T (Percival and Walden, 2000). This is so-called 
multiresolution analysis (MRA). Here, J is the highest decomposition 
level, which will be further discussed in the section of unbiased variance 
transformation. The property of DWT ensures that the sum of the vari-
ance of the sub-time series equals the variance of the original time series, 
which means 

∑J+1
j=1 I2

j = 1
n− 1XTX = σ2

X. Accordingly, X can be written as 

a matrix multiplication X = R̂I with the standardized reconstruction 
matrix R̂ = [d̂1,…, d̂J, âJ]. The variance transformation is achieved by 
reconstructing a new predictor X′ with variance structure α similar to 
the corresponding response in the frequency domain. They can be 
written as: 

X′

= R̂α
α = σX Ĉ

(1)  

where Ĉ is the normalized covariance of the variable set (Y, R̂), and the 
covariance C has the form of 

C=
1

n − 1
YT R̂ =

[

S
Y d̂1

,…, S
Y d̂J

, SY âJ

]

. (2) 

Essentially, the reconstructed new predictor X′ is obtained by 
redistributing the variance in its spectrum and it has the same total 
variance as the original predictor X. All potential predictors will be 
reconstructed with this operation, and a reconstructed new set of pre-
dictors is then used for predictor selection and response prediction. 
Assuming that the variance transformed predictor is used to predict the 
associated response with simple linear regression, we can derive the 
theoretical optimal prediction accuracy as measured by root mean 
square error (RMSE): 

RMSEmin =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n − 1

n
(
σ2

Y − ‖C‖
2)

√

, (3)  

where σY denotes the standard deviation of the response Y. 
The method originally proposed by Jiang et al. (2020) requires both 

additive decomposition (i.e., MRA) and variance decomposition (i.e., 
energy-based decomposition). To extend the method to consider fore-
casting problems, the DWT can be replaced by wavelet approaches that 
do not include future time steps (such as MODWT and AT). However, for 
the above derivation to be valid then the new wavelet approaches need 
to also fulfill the requirement for additive and variance decomposition. 
Both MODWT and AT fulfill these two requirements only when the Haar 
wavelet filter (equivalent to Daubechies 1, db1 or d2) is adopted. When 
the Haar wavelet filter is used MODWT and AT are equivalent (i.e., lead 
to the same decomposed frequency components). Therefore, for fore-
casting applications, WASP has been extended to include MODWT with 
the Haar wavelet filter as the basis for the variance transformation. 
There is a potential risk that the spectrum of the variables of interest 
cannot be characterised well because the wavelet filter is limited to the 
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Haar wavelet filter. However, the logic can be applied to both MODWT 
and AT when other wavelet filters are adopted, as they provide addi-
tional ways to characterise the spectrum of variables of interest. 

Another advantage of using MODWT is that there is no restriction on 
the dyadic sample size. Briefly, MODWT decomposes the original time 
series X into a n × (J+1) matrix of wavelet and scaling coefficients W̃ =

[D̃1,…,D̃J,ÃJ], and the associated standard deviation matrix is given by 
Ĩ = [σD̃1

,…, σD̃J
, σÃJ

]
T. MODWT also ensures variance decomposition, 

which means 
∑J+1

j=1 Ĩ2
j = 1

n− 1XTX = σ2
X. This provides a way to investigate 

and transform the variance structure of the coefficients matrix, W̃, 
directly. As a result, using the covariance C of the variable set (Y, W̃) the 
variance transformed X′ can be obtained given by the equation: 

X’ =
̂W̃αα = σX Ĉ (4)  

where ̂̃W is the standardized coefficients matrix W̃. It is noted that the 
coefficients matrix W decomposed from DWT has the dimension of n× 1 
while the coefficients matrix W̃ from MODWT has a dimension of n×
(J + 1). Expect for the independence on future information, this is 
another reason the coefficients matrix of MODWT can be directly used 
for variance transformation. 

2.2. Unbiased variance transformation 

The second methodological contribution of this study is to solve the 
issue of boundary bias in applying wavelet-based methods. Boundary 
related issues are due to sample size, the choice of decomposition level, 
as well as wavelet filter. Table 1 summarizes the size of the boundary 
effects for both types of wavelet transforms. As shown in the table, the 
number of non-boundary coefficients depends on the sample size (N), 
the decomposition level (j), and the width of wavelet filter (L). The 
multiresolution analysis of DWT is affected at the beginning and the end 
of the sub-time series while MODWT is only affected at the start of the 
decomposed components. It is clear that shorter wavelet filter, longer 
time series or lower decomposition level leads to a smaller number of 
boundary coefficients. In wavelet theory, the exclusion of boundary 
coefficients in wavelet variance estimation is called unbiased estimator 
(Cornish et al., 2006). There is a smaller difference between biased and 
unbiased estimates when fewer boundary coefficients need to be 
excluded. 

Here we propose to adopt the unbiased variance transformation by 
computing the covariance using only the non-boundary coefficients as 
follows: 

C* =
1

n − 1
YT R̂

*
(5)  

where the asterisk * implies the unbiased value. R̂
* 

(or 
̂
W̃* ) is the 

standardized matrix excluding boundary coefficients, and C* is a vector 
of unbiased covariance. It is worth noting that the unbiased estimator 
can only be computed for some decomposition levels. However, the 

nature of variance transformation requires greater decomposition levels 
thus we still use the biased estimator whenever the unbiased estimator is 
not available. The introduction of unbiased variance transformation is 
not likely to change the model performance substantially when a shorter 
wavelet filter is used and larger sample size is available. 

2.3. Partial informational correlation 

The wavelet-based variance transformation approach adopts PIC, 
which takes the partial dependence between predictors and the response 
into account to identify significant (in this case variance transformed) 
predictors. A short description of the logic behind PIC is presented here, 
and readers are referred to Sharma (2000), Galelli et al. (2014) and 
Sharma and Mehrotra (2014) for additional details, as well as to Sharma 
et al. (2016) for the software, known as NPRED, needed to estimate the 
PIC. 

The partial information (PI) is based on information theory and 
measures the dependence between the response Y and a potential pre-
dictor X of the response given pre-existing predictor(s) Z. Thus, a sample 
estimate of PI(Y,X|Z) is written as: 

P̂I(Y, X | Z) =
1
n
∑n

i=1
log e

[
fY|Z,X|Z(Yi,Xi| Zi)

fY|Z(Yi|Zi)fX|Z(Xi | Zi)

]

(6)  

where Yi and Xi is the i-th bivariate sample data pair in a sample of size n. 
Y|Z and X|Z are partial response and partial independent variable, 
which represent the residual information in variables Y and X, when the 
effect of pre-existing predictor(s) Z has been taken into account. 

fY|Z(Yi

⃒
⃒
⃒Z), fX|Z(Xi

⃒
⃒
⃒Z) and fY|Z,X|Z(Yi,Xi|Z) are the respective marginal and 

joint probability densities using kernel density estimation. The PI can be 
scaled to the range from 0 to 1, which is introduced as the PIC: 

P̂IC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − exp
(
− 2P̂I

)√

(7) 

Thus, the PIC is a generic measure of conditional dependence, where 
0 represents no dependence and 1 represents perfect dependence. A 
measure of statistical significance for the PIC is also required, 

t=PIC
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m
1 − PIC2

√

(8)  

where t follows the Student’s t distribution with m = n-l degrees of 
freedom, with n being the number of observations and l the number of 
conditioning variables. This is used for the stopping criterion when 
selecting the significant predictor variable(s). Given a certain signifi-
cance level p (we used p = 0.1 in the case study), when the estimated PIC 
is smaller than an associated threshold PICp for all the remaining partial 
predictors, the selection process will be terminated. 

2.4. Modified k-nearest neighbor regression estimator 

Selecting a predictive model is generally based on the nature of the 
modelling system as well as the modeler’s experience. Regression 
methods have been widely solved by using the parametric least squares 
estimator approach. Non-parametric models can also be used with the 
advantage that fewer assumptions about the distribution of the popu-
lation are required. In this study, the nonparametric knn method was 
used for prediction. 

The key to the knn method is to find the closest observations to x in 
the training dataset to form Ŷ. Specifically, the knn fit for Ŷ is defined as 
follows: 

Ŷ (x)=
1
k
∑

xi∈Nk(x)

yi (9)  

where Nk(x) is the neighbourhood of x defined by the k closest points xi 

Table 1 
Summary of the size of boundary effects.  

Wavelet 
Method 

Beginning of 
the signal 

End of the 
signal 

Total number of 
boundary 
coefficients 

Non-boundary 
coefficients 

DWT-MRA t = 0,1, …, Lj- 
2 

t = N-1, N- 
2, …, N- 
Lj+1 

2(Lj-1) N-2(Lj-1) 

MODWT t = 0,1, …, Lj- 
2 

– Lj-1 N-Lj+1 

Note: The width of the j-th level wavelet or scaling filter Lj = (2j-1)(L-1)+1, 
where L is the width of the j = 1 base filter. 
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in the training sample (Friedman et al., 2001). The closeness is a dis-
tance metric, which can be defined by Euclidean distance, as well as a 
range of alternate distance metrics (Weinberger et al., 2006). Mehrotra 
and Sharma (2006a) argue for the use of a weighted Euclidean distance 
using a discrete kernel, K(i) with weights estimated based on the partial 
importance each predictor exerts on the response. In this current study, a 
linear extrapolation of the associated response based on the covariance 
of the predictor-response dataset was implemented. This is required 
because when considering climate change projections future predictor 
values may exceed the range of the observed data over which the knn 
model is trained. This subtle modification is based on the kernel 
regression as described by Sharma et al. (1997): 

Ŷ

(

x

)

=
1

K(i)
∑

xi∈Nk(x)

(yi + ST
xyS

− 1
xx

(

xi − x

))

K

⎛

⎜
⎜
⎝i

⎞

⎟
⎟
⎠ =

1/i
∑k

i=1
1/i

(10)  

where Sxy and Sxx represent the covariance matrix for the variable set (x, 
y) and (x, x), respectively. 

3. WASP R-package structure 

3.1. Details of the software 

Fig. 1 is a flowchart of the proposed method, showing the general 

Fig. 1. Flowchart of the proposed variance transformation method.  
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process that is required for the variance transformation technique. This 
algorithm is implemented in the R library WASP software. A detailed 
help-file for each function and test data are provided in the package as 
well. 

In summary, the R package consists of built-in functions for variance 
transformation operation for calibration (“dwt.vt”, “modwt.vt”, and “at. 
vt”) and validation (“dwt.vt.val”, “modwt.vt.val”, and “at.vt.val”) based 
on DWT, MODWT, and AT, respectively; the option of unbiased variance 
transformation for each variance transformation method is included in 
these functions with flag = c(“biased”, “unbiased”); and the modified 
knn regression predictive model (“knn”). There are several supplemen-
tary functions, including padding function (“padding”) which extends 
the data to provide a dyadic sample size for the DWT-based variance 
transformation, and three synthetic data generator functions used in 
Jiang et al. (2020). Each of these codes come with associated help-files 
that provide guidance on their use. As described in the following section, 
datasets from the drought prediction case study are provided in the 
package, and all the results reported in this paper are reproducible using 
RMarkdown provided in the vignettes of this R package. Fig. 2 is a 
screenshot of the sequence of R commands illustrating the usage of the 
WASP package to transform the potential predictors (see Figure S 1 in 
the Supporting Material for an example of predictor variables before and 
after variance transformation corresponding to the response), identify 
the significant predictors, and predict the associated response. MODWT 
is adopted as the basis of wavelet transform in this case study since we 
are using observed data to predict target response and thus there is no 
dependence on future information. All codes and data in the package are 

open source. 
It should be noted that when applying this method to forecast a 

future response, we assume that the conditional dependence between 
the predictor variables and the response remains unchanged into the 
future. Thus, the covariance between the response and wavelet de-
compositions of predictor variables from historical data is used for 
future predictions as well as the fitted predictive model. To check the 
validity of this assumption, we use cross-validation by partitioning the 
historical data into four complementary subsets. One subset is used as 
the validation set while other subsets are used as the calibration set. The 
results presented hereafter are cross-validated results for the entire 
period. The rationale for using cross-validation is that we can have a 
better assessment of the model performance with independent datasets 
(Mehrotra and Sharma, 2006b; Nguyen et al., 2019). It is important to 
note however that in the context of anthropogenic climate change, the 
range of future changes will likely exceed those observed in the past so 
the cross-validation is not a perfect test of our stationarity assumption 
for the predictor-response dependence structure. 

3.2. Prediction of Standardized Precipitation Index over Australia 

The WASP package was applied to predict the SPI using various 
climate indicators over Australia to assess the impact the variance 
transformation makes. We adopted climate indicators used in previous 
prediction of sustained hydrologic anomalies using the SPI (Rashid 
et al., 2020) and further expanded this dataset by including additional 
climate drivers strongly influencing Australia climate (Cai and Cowan, 

Fig. 2. Example of typical usage of modwt.vt and modwt.vt.val for the real case study at a sampled grid. Here the task is to transform potential predictors (climate 
indices), identify the significant predictors, and predict the associated response (SPI12) using a modified knn model. Note that the predictor selection uses the 
stepwisePIC function directly from the NPRED package. 
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2013; Kirono et al., 2010; Murphy and Timbal, 2008). Table 2 lists the 
details of the climate indices considered in this study. The monthly 
anomalies of Nino3.4, PDO, and DMI are derived from monthly sea 
surface temperature (SST) values of Hadley Centre Global Ice and Sea 
Surface Temperature (HadISST) datasets (Rayner et al., 2003). SAM is 
calculated using sea level pressure (SLP) from NOAA Earth System 
Research Laboratory’s Physical Sciences Division (PSD). The Australian 
Water Availability Project (AWAP) gridded monthly rainfall metadata is 
obtained from the Bureau of Meteorology (Jones et al., 2009) and is 
regarded as observations. The rainfall data was re-gridded to 2.5 ◦ ×

2.5 ◦ over Australia using weighted area average and the SPI for 
12-month and 36-month periods (SPI12/SPI36) is calculated (McKee 
et al., 1993). Note that grid cells where more than 25% of rainfall values 
are zero or missing are removed from the calculations due to data reli-
ability concerns (Spinoni et al., 2014). As described previously, we split 
the data into four equal subsets for cross-validation. The study period 
was 1910–2009. 

First of all, significant climate indicators were identified at each 
rainfall grid over Australia using PIC from the set of four variance 
transformed climate indices. In Fig. 3, the most significant drivers (i.e., 
the most frequently selected predictor in the PIC process among the four 
cross-validation subsets) for both SPI12 and SPI36 are shown. In addi-
tion, four randomly chosen grids that are used to examine the results in 
detail in this study are highlighted with grid index numbers in red color 
(refer to Figure S 2 in the Supporting Material for the complete overview 

of grid index over Australia). Table 3 summarizes the most significant 
climatic driver selection using both original and variance transformed 
(VT) climate indices (see Figure S 3 in the Supporting Material for the 
selection results using original climate indices). 

As expected based on previous research, drought in Australia is 
significantly influenced by El Niño–Southern Oscillation (ENSO) (Cai 
et al., 2011; Fierro and Leslie, 2013; Pui et al., 2012; Westra and Sharma, 
2010). For SPI12, most grids (83%) are influenced by ENSO, and more 
than half of grids (89%) are sensitive to ENSO for SPI36. On the other 
hand, the selection results using original climate indices are similar (i.e., 
ENSO is the main climatic driver of Australia rainfall) with less grids 
affected by ENSO particularly for SPI36. One interesting observation is 
that there are several grids where no climate drivers are identified as 
useful for prediction if the original (untransformed) climate indices are 
used because of the discrepancies in the temporal scale of the response 
and the potential predictors. This demonstrates the advantage of vari-
ance transformation technique in selecting predictor variables (Jiang 
et al., 2020). Another interesting outcome is that the use of variance 
transformation leads to a reduced selection of non-Pacific variability 
indicators such as DMI and SAM in the resulting model, with these 
variables being relegated to second or higher order predictors in the 
ensuing model. 

Fig. 4 (a) and (c) present the density plots of observed, predicted and 
predicted with variance transformation SPI at the four randomly 
sampled grids. It is clear that the probability distributions of predicted 
SPI using variance transformed predictors are closer to observed SPI in 
the sampled grids. Its closeness can also be measured by the PDF skill 
scores (Perkins et al., 2007), which are shown in Fig. 4 (b) and (d). The 
value of a PDF skill score ranges between 0 and 1, and 1 represents a 
perfect match. These results suggest that the wavelet-based approach 

Table 2 
List of atmospheric variables considered in the study.  

Index 
No. 

Climate Indicator Abbreviation 

1 East Central Tropical Pacific, the area averaged SST 
from 5S-5N and 170-120W. 

Nino3.4 

2 Pacific Decadal Oscillation, the leading PC of monthly 
SST anomalies in the North Pacific Ocean 

PDO 

3 Southern Annular Mode, the difference of zonal mean 
SLP between 40◦S and 65◦S 

SAM 

4 Indian Ocean Dipole, the anomalous SST gradient 
between the western equatorial Indian Ocean (50E-70E 
and 10S-10N) and the south eastern equatorial Indian 
Ocean (90E-110E and 10S-0N), named as Dipole Mode 
Index 

DMI  

Fig. 3. The most significant predictors identified using variance transformed climate indices over Australia for different time scales of SPI. (a) SPI12; (b) SPI36. Four 
randomly sampled grids investigated in the study are indicated in red color. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Table 3 
Number of grid cells with significant order 1 predictor variable of SPI over 
Australia with and without variance transformation.  

Drought Index Model Nino34 PDO SAM DMI Total (138) 

SPI12 VT 114 14 7 3 138 
SPI36 123 11 4 0 138 
SPI12 Original 98 13 12 13 136 
SPI36 63 38 22 12 135  

Z. Jiang et al.                                                                                                                                                                                                                                    



Environmental Modelling and Software 135 (2021) 104907

7

can capture sustained drought/wet anomalies well. A close look at the 
selection results in Table 4 provides more information about the benefits 
of the proposed method. First, additional climate indices can be selected, 
which is likely to result in considerable improvements at all grids. Sec-
ond, even when the same predictor variables are selected (as the case in 
Grid 94 for both SPI12 and SPI36), the variance transformation leads to 
improved characterisation of sustained anomalies. Only a small 

improvement is observed at Grid 142 for SPI12 after applying variance 
transformation because at this location reasonably good skill was ob-
tained from the original predictors. 

In Fig. 5 (a) and (c), the improvement in PDF skill scores (percentage 
relative to non-wavelet models) for both SPI12 and SPI36 over Australia 
is presented. The wavelet-based method provides improvements at 
around 99% and 97% of grids for SPI12 and SPI36, respectively. Grids 
with white areas represent grids with missing data located in the central 
and western desert of Australia (Jones et al., 2009), while grids with 
black dots refer to locations with no improvements after variance 
transformation is used. Further, scatterplots in Fig. 5 (b) and (d) provide 
the magnitude of PDF skill scores at all grids over Australia, and the 
model using the proposed variance transformation technique out-
performs the reference model using original climate indices. The biggest 
improvements tending to occur for locations that had lower skill with 
the non-wavelet model consistent with the results discussed above for 
Grid 142. It is noted that the improvements in prediction performance of 
SPI36 are larger than for SPI12, which results from possibly identifying 
and characterising one of the known major drivers of droughts in 
Australia (i.e., ENSO) using variance transformed climate indices. 

What we have shown here represents the results of the MODWT- 
based biased variance transformation, with the results using the unbi-
ased estimator being given in Figure S 4 of the Supporting Material. In 
addition, boxplots in Fig. 6 compare the model performance between 
approaches using biased and unbiased estimator. First, the unbiased 

Fig. 4. Comparison between observed, predicted and predicted with variance transformation drought indices at four sampled grids. SPI12: (a) Density plot (b) PDF 
skill scores; SPI36: (c) Density plot (d) PDF skill scores. 

Table 4 
Rank of identified climate drivers by frequency at four sampled grids.  

Grid Drought Index Model Nino34 PDO SAM DMI 

94 SPI12 Original 1 3 4 2 
VT 4 1 2 3 

SPI36 Original 1 4 2 3 
VT 1 2 3 4 

142 SPI12 Original 1 – – 2 
VT 1 3 2 4 

SPI36 Original 1 3 2 – 
VT 1 2 3 4 

149 SPI12 Original 1 2 – – 
VT 1 4 2 3 

SPI36 Original – 1 – 2 
VT 1 2 3 4 

177 SPI12 Original 2 1 3 – 
VT 1 2 3 4 

SPI36 Original – 2 3 1 
VT 1 2 3 4  
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variance transformation does show improved prediction accuracy with 
all grids presenting improvements while with the biased variance 
transformation there are several grids perform worse than the reference 
model. Second, the unbiased variance transformation shows better mean 
statistics in both drought indices with greater improvements in SPI36. 
There is no significant difference in the two, which is due to the fact that 
the Haar wavelet filter has been used and large sample size is available 
in this case study. 

Meanwhile, we have also done the experiments under two folds 
cross-validation with varying wavelet filter length seen in Table 5. The 
results of PDF skill scores show that first, the unbiased variance trans-
formation approach outperform its alternative in both mean and median 
statistics; second, larger differences between two estimators are 
observed when we adopt wider wavelet filters in both mean and median 
statistics given the similar standard deviation (SD) across all grids. It 
should be noted that there is an exception when using d8 for SPI12 
(median) and SPI36 (mean) prediction the difference of statistic gets 
smaller, which is likely due to the violation of additive decomposition 
when other wavelet filters are adopted. However, the results we show 
here confirm the argument that MODWT or AT can be applied as the 
basis for variance transformation even when wavelet filters other than 
the Haar are adopted. 

4. Summary and conclusions 

The open-source WASP R-package contains the codes, sample data-
sets and help-files for natural system prediction. We introduce the 
MODWT-based variance transformation, which resolves the issues of 
future dependence. Moreover, the boundary related bias is addressed 
using a newly proposed unbiased variance transformation. Both im-
provements have broadened the application of wavelet-based variance 
transformation method. The use of the wavelet-based variance trans-
formation technique is demonstrated by predicting a drought index over 
Australia using various climate indices, but the logic represents a generic 
approach not limited to modelling hydro-climatological systems alone. 
This approach has shown substantial improvements in predictive accu-
racy especially in systems where the response and plausible predictor 
variables have large differences in their spectrums. 

It is worth noting that this method provides a way to predict a target 
response in a complex system without making assumptions and simpli-
fications including characterising the form of the underlying model that 
relates the two. This is implicitly undertaken by the variance trans-
formation technique thereby formulating a transformed predictor that 
can be expected to have a concurrent relationship with the response 
ensuring improvement of predictivity in the complex system. However, 
the proposed approach has its inherent limitations and should be applied 
with care. First, the boundary related bias is a curse, thus the selection of 
wavelet family and the length of filters should be realistic given the 

Fig. 5. Comparison of PDF skill scores between original and variance transformed (VT) predictors with MODWT-based biased variance transformation. SPI12: (a) 
The percent improvement of PDF skill scores over space (b) Scatterplot of PDF skill scores; SPI36: (c) The percent improvement of PDF skill scores over space (d) 
Scatterplot of PDF skill scores. 
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nature of the physical phenomenon with varying data length (Bakshi, 
1999; Maheswaran and Khosa, 2012; Percival and Walden, 2000; Tor-
rence and Compo, 1998). In addition, the rule of thumb of the decom-
position level by Kaiser (2010) is preferred such that the variance 
transformation is done across the entire spectrum of the predictor 

variables (Jiang et al., 2020). 
Lastly, while the logic presented here focusses on the modelling of a 

single response, extensions to modelling multiple responses are possible. 
Future extensions of the proposed logic will illustrate how we can extend 
the approach here to multiple response variables, while keeping the 

Fig. 6. Comparison of model performance between approaches using biased and unbiased estimator. Blue dots represent the mean value of PDF skill scores. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 5 
Comparison of biased and unbiased variance transformation approach with varying wavelet filter length.  

Metric SPI Wavelet filter Decomposition levels (J) Biased Unbiased Difference (Unbiased-Biased) 

Mean 12 Haar(d2) 9 0.664 0.672 0.008 
d8 8 0.658 0.685 0.027 
d16 7 0.635 0.652 0.017 

36 Haar(d2) 9 0.679 0.699 0.020 
d8 8 0.716 0.718 0.002 
d16 7 0.697 0.719 0.022 

Median 12 Haar(d2) 9 0.659 0.678 0.019 
d8 8 0.664 0.680 0.016 
d16 7 0.632 0.653 0.021 

36 Haar(d2) 9 0.684 0.703 0.019 
d8 8 0.703 0.724 0.021 
d16 7 0.698 0.726 0.028 

SD 12 Haar(d2) 9 0.065 0.068 0.003 
d8 8 0.060 0.075 0.015 
d16 7 0.065 0.071 0.006 

36 Haar(d2) 9 0.069 0.072 0.003 
d8 8 0.064 0.068 0.004 
d16 7 0.068 0.070 0.002  
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dimensionality of the predictive system small enough to maintain 
robustness in predictions. 

Software availability 

The open-source R-package WASP is available for download from the 
following website http://www.hydrology.unsw.edu.au/software/WASP 
and results in this work are fully reproducible through the Rmarkdown 
in the vignettes of this R package. Source codes are available, along with 
help-files and example datasets used to generate the outcomes reported. 
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