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ABSTRACT: Phosphate removal is a crucial objective in wastewater engineering to reduce harmful environmental impacts like
eutrophication. Adsorption, a low-cost and efficient process for phosphate abatement, primarily relies on trapping phosphate on low-
solubility solid surfaces. Metal-based materials, due to their abundance, low cost, environmental friendliness, and chemical stability,
are considered the most promising phosphate adsorbents. However, the synthesis of appropriate adsorbents is complex and time-
consuming. In addition, the diverse textural properties, the presence of various metals, and the selection of adsorption parameters
make it challenging to the underlying mechanism of phosphate adsorption. In this study, we compiled a data set including 1800 data
points mined from 128 peer-reviewed papers and adopted machine learning (ML) to systematically evaluate phosphate adsorption
concerning textural properties, metal compositions, and adsorption parameters. We applied three different tree-based algorithms,
including random forest (RF), decision trees (DTs), and extreme gradient boosting (XGBoost), to guide the design of adsorbents
and predict the phosphate adsorption performances. Among the three algorithms, RF showed the best predictive performance with a
high R2 of 0.984 and a low root-mean-squared error (RMSE) of 0.650. Feature importance, based on the Shapley values,
demonstrated the contributions of adsorbents’ textural properties (e.g., surface area), adsorption parameters, and metal types in the
order of precedence of phosphate adsorption, providing critical insights into guiding adsorbents design and synthesis for phosphate
adsorption applications.
KEYWORDS: machine learning, phosphate adsorption, tree-based algorithms, prediction

1. INTRODUCTION
Phosphorus, a nonrenewable resource on the earth, is an
indispensable element for all organisms.1,2 Phosphorus, widely
used in medicine, glass, ceramics, food, dyes, pesticides,
metallurgy, and other aspects, has an important role, especially
in agriculture for phosphate fertilizer production.3 Never-
theless, when the total phosphorus concentration is greater
than 0.02 mg L−1 in natural waterbodies, eutrophication will
occur, leading to the uncontrollable growth of algae and
breaking the ecological balance of aquatic systems.4−7

Therefore, removing and recovering phosphorus from
phosphorus-containing wastewater will not only eliminate
water eutrophication but also alleviate global phosphorus
shortage, representing great environmental and economic
benefits.8,9

Phosphorus mainly exists in the form of inorganic phosphate
in water and wastewater,10 which can be removed by physical
adsorption, chemical precipitation, ion exchange, and bio-

logical processes.11−16 Compared with other methods, physical
adsorption is an effective, reliable, and environmentally friendly
phosphate removal process, which will be potentially applied in
various situations, especially for decentralized wastewater
treatment.8,17−19 Regarding phosphorus adsorption, there are
three interaction mechanisms including hydrogen bonding,
shape complementarity (one of the mechanisms of phosphate
adsorption, in which the selective removal of phosphate is
achieved by designing specific cavities or shapes of molecularly
imprinted polymers depending on the geometry of the
phosphate anion), and inner-sphere complexation.8,20,21
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To date, various types of adsorbents have been developed
for the removal of phosphate from wastewater. These include
natural materials, metal oxides, and layered double hydrox-
ides.22,23 They are easy to get and operate, and they have high
selectivity. More and more focus has been placed on the
development of the phosphate adsorption capacity, selectivity
by metal type, and microporous structure of metal-based
adsorbents. Among them, metal-containing (e.g., lanthanum
(La), aluminum (Al), iron (Fe), zirconium (Zr), calcium (Ca),
and magnesium (Mg)) adsorbents are promising considering
their environmental friendliness and high affinity for
phosphate.8 Apart from the types and amounts of the metals,
the selection of appropriate base materials is also of great
significance in fabricating extraordinary adsorbents. The
phosphate adsorption isotherms of metal-based adsorbents at
different pH values, temperatures, times, and rates of agitation
have been widely studied for acquiring phosphate adsorption
capacities to guide adsorbent design, optimization, and
fabrication.24 The final phosphate adsorbents are expected to
have a high specific surface area, large pore volume,
appropriate pore size, excellent hydrophilicity, and other
features to achieve satisfying phosphate removal perform-
ance.25

Traditional adsorbents are made with a variety of character-
istics in mind, including numerous hydrogen bonds, channels
with regular shapes, and unique affinities. A variety of
techniques have been applied to modify and activate
adsorbents, including composite/doping, soaking, calcination,
precipitation, acidification, and heat treatment. These conven-
tional techniques have many drawbacks such as complex
processes and high chemical and energy consumption. To
comprehensively evaluate the phosphate adsorption processes,
influencing factors such as the external environment,
adsorption material, and adsorption solution must be
considered. In contrast to a single evaluation metric, a data
set with complex data and a large amount is required.
Advancements in data science, such as machine learning (ML)
and artificial intelligence (AI), have been applied to large data
sets in many environment-related research areas to better
interpret the complex relationships between system variables
that affect system behavior and to provide new insights into

their understanding and solution development.26 In order to
optimize the phosphate adsorption process and direct the
choice and preparation of adsorption materials, we can
simultaneously apply the ML approach to the adsorption of
phosphate. Previous documents have reported the applications
of ML in solving multiple environmental problems such as
heavy metal removal,27,28 micropollutant oxidation,29,30 sea-
water desalination,31,32 carbon dioxide adsorption,33,34 and
municipal solid-waste treatment.35,36 A number of ML models
such as bagging,37 linear regression (LR),38 neural networks
(NNs),39 and support vector machines (SVMs),40 and tree-
based ML models have been developed in previous studies.
Particularly, decision tree-based algorithms, including gradient
boosting decision tree (GBDT), decision tree (DT), extreme
gradient boosting (XGBoost), categorical boosting (Cat-
Boost), light gradient boosting machine (LightGBM), and
random forest (RF), are a subcategory of supervised ML
models.29,41−47 DT is a tree structure that is like a binary tree
or multitree. XGboost and LightGBM belong to GBDT
(gradient boosting decision tree), and in these methods, a tree
structure includes two separate steps. First, the appropriate
structure for the tree must be found. Second, leaf values must
be set as soon as the tree structure is finalized.48 CatBoost,
short for classification enhancement, is a state-of-the-art, open-
source toolbox for gradient improvement that can handle the
challenge of addressing the fundamentally distinct ideas of
classification features. In comparison to deep learning models,
RF in the scikit-learn package is a resilient ensemble model
that can be used to make accurate predictions with a limited
number of model parameters and is gaining more interest in
the scientific and technical communities.32 These tree-based
algorithms have gained increasing popularity due to their
ability to handle relatively small data sets (200−1000 data
points) with more robust and faster hyperparameter tuning
compared with widely used ANN and SVM models.33 In the
field of machine learning, the mainstream prediction
algorithms include RF, DTs, SVM, NN, and others. We
found that while NN can predict accurately based on training
data, it often suffers from overfitting as it learns noise in the
data. Additionally, the lack of gating in neural network
algorithms leads to long running times, which reduces

Figure 1. Schematic of the sequential approach followed in the current study, including three stages: (1) data mining: data on phosphate
adsorption, including the adsorbent’s characteristics and operating circumstances, were gathered from 128 peer-reviewed studies; (2) model
establishment: this procedure comprises data splitting (training set, validation set, and test set) and model comparison (two metrics include RMSE
and R2); and (3) model prediction: the Sharpley value can assess the phosphate system’s parameters and pinpoint crucial ones for phosphorus
removal from wastewater that contains phosphorus, which helps fabricate phosphate adsorbents.
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computational efficiency.49 SVM algorithms are sensitive to
parameter tuning, which has a significant impact on model
convergence.50 On the other hand, RF algorithms, which are
based on multiple independent decision trees, can solve
overfitting or underfitting problems. They are very robust and
easy to understand and interpret and have good accuracy.51 In
comparison with XGBoost and DTs, RF can handle overfitting
and has low sensitivity to noise owing to the ensemble training
methods known as bootstrap aggregation.32,52,53

Given the aforementioned gaps, a data-driven ML model
was developed to predict phosphate adsorption from waste-
waters by considering both adsorbent design and operational
conditions. We first mined previous documents for a data set of
six metal hydroxide/oxide (i.e., lanthanum (La), aluminum
(Al), iron (Fe), zirconium (Zr), calcium (Ca), and magnesium
(Mg))-based adsorbents by collecting 1800 adsorption data
points (SI Table S1). We then compared two different data
spitting methods (i.e., point selection and group selection) to
address the potential data leakage issue and selected the data
that are the most appropriate as the training set to build a
robust prediction model. We also investigated the perform-
ances of three different models, including RF, DT, and
XGBoost, by comparing the root-mean-squared error (RMSE)
and correlation of determination (R2) (refer to the Section 2).
Finally, to quantify the contribution of 12 descriptors to the
overall adsorption capacity and identify the feature importance,
Shapely values were calculated. These results help to analyze
phosphate adsorption via metal hydroxide/oxide-based adsorb-
ents, guide the adsorbent design and synthesis, and identify the
influence of background ions on phosphate adsorption
performances. A schematic of the sequential approach followed
in this study is presented in Figure 1.

The practical application of the model guides the synthesis
of the material according to the importance of the parameters
of the adsorption system (e.g., if the specific surface area is the
most prominent in the adsorption system, then the focus
should be on increasing the specific surface area of the material
when designing the material), which will facilitate the removal
of phosphate from the water column. In view of the above, the
model was developed by considering the material design and
the adsorption process. The material design includes metal
type, metal content, specific surface area, pore volume, and
average pore size; the operating parameters of the adsorption
process include temperature, pH, equilibrium concentration,
and equilibrium adsorption volume. The model parameters
were evaluated by averaging absolute Shapley values to derive
the magnitude of their contribution to phosphate removal from
water and thus guide phosphorus removal from the wastewater.

2. METHODOLOGY
2.1. Data Collection and Formatting. In the adsorption

process of phosphate, it was important to distinguish between
phosphate adsorption and deposition. Phosphate precipitation
was the reaction of phosphate with cations such as Al3+, Fe2+/
Fe3+, and Ca2+ to form minerals such as aluminum phosphate,
iron phosphate, and calcium phosphate, respectively. Precip-
itation was a slow process that permanently changed to
metallic phosphate, and reversibility was very difficult.54,55

However, the mechanism of phosphate adsorption involved
hydrogen bond formation, shape complementarity, and
internal complexation in three ways, making the process
reversible.11,56 So, the desorption of phosphate from the
adsorbent material could be achieved by the addition of

alkaline substances. We obtained data from the literature on
phosphate adsorption by metal adsorbents, which was
dominated by adsorption. Adsorption and surface precipitation
were not well distinguished in the reviewed literature.
However, the authors of these studies have used these
experimental data to differentiate between the different
modes of adsorption.

Data were collected according to the following steps: (i)
searching literature through Web of Science and Google
Scholar by using the topic “phosphate adsorption or phosphate
removal” to find relevant studies from 2006 to 2022, (ii)
manually checking the titles, abstracts, and keywords of these
documents to narrow down the studies to phosphate
adsorption by six metal hydroxide/oxide (i.e., La, Al, Fe, Zr,
Ca, and Mg)-based adsorbents, (iii) carefully reading through
these papers and selecting the papers that reported the key
variables included in Table S1, which led to a final list of 128
papers (the full list of these publications is available in the SI),
and (iv) thoroughly reading each paper and extracting
phosphate adsorption performance data.

The following criteria and assumptions were incorporated
during the data extraction process.
(1) Data set (14 descriptors) included metal types, surface

area, pore size, pore volume, solution pH, system
temperature, background, adsorption capacity, and
adsorption equilibrium concentrations in peer-reviewed
research papers.

(2) The isotherm fitting coefficient (R2) needed to be higher
than 0.9, with at least six experimental points in each
adsorption isotherm.

(3) The experimental data were directly collected from the
tables and texts or extracted from the figures by using
PlotDigitizer software (http://plotdigitizer.sourceforge.
net/) presented in the 128 papers. All data were
carefully selected to avoid duplication during the data
collection process.

(4) Descriptors can be classified into two types according to
system features: (i) operational parameters including pH
that can influence the form of phosphate in aqueous
solution and temperature that will affect phosphate
adsorption kinetics; (ii) the textural properties of the
adsorbents such as the elemental compositions of metal
contents (wt %), specific surface area (SA, m2 g−1), total
pore volume (TPV, cm3 g−1), and average pore size
(APS, nm) of the adsorbents.

(5) Note that the equilibrium phosphate adsorption capacity
was the output of the black box system, whereas the
descriptors were used as the input during the modeling
process.

As mentioned above, we collected 1800 data points (SI
Table S1) associated with six types of metal (i.e., La, Fe, Zr,
Ca, Al, and Mg)-based adsorbents from 128 references.
2.2. Data Preprocessing. All data were transformed into

consistent units for model training (details are given in SI Text
S1). Note that TPV and/or APS data were sometimes absent
in the literature. The missing TPV and/or APS data can be
imputed through ML methods to avoid discarding records of
these data. Specifically, multilinear regression (MLR), the
least-squares method (LSM), and RF models can be employed
to calculate and impute the missing values of TPV and APS
(details are given in the Section 3). Note that some literature
did not show the specific metal content (wt %), and we
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ignored the detailed information but used “1” or “0” to
represent the presence of metal or not during the model
process.

The interrelationship between two parameters was described
by the Pearson correlation coefficients (PCCs),33,57,58 which
are calculated as follows.

x x y y

x x y y

( )( )

( ) ( )

i
n

j
n

i j

i
n

i j
n

j

1 1

1
2

1
2

= = =

= = (1)

where ρ is the value of PCC, x̅ and y̅ denote the means of input
feature x and output variable y, respectively, and n denote the
total amount of the sample. The value of ρ ranges from −1 to
1, where the two variables show no correlation when ρ is equal
to 0. The closer the ρ to 1 after taking the absolute value, the
stronger the correlation between the two variables.

Finally, after completing data collection, data preprocessing
for units’ consistency, and filling in missing values, the data,
including the input feature and output target, were normalized
to obtain a uniform range of values. The following equation, eq
2, can achieve this goal.33

x
x x

si
i i

d
=

(2)

where xi represents the value of the input feature, xi* represents
the standardized value of initial xi, x̅i is the mean value of xi,
and Sd indicates the standard deviation of xi.

Data splitting is the first and probably the most critical step.
During the ML model training process, it is of great
significance to prevent data leakage by applying appropriate
data splitting methods. In this study, two different data
splitting methods (Figure 2) were employed and compared: (i)
point selection (Figure 2a) that randomly divided data points

from the originally collected data minus the test set into
training and validation sets (note that the test set still only
included the entire group); and (ii) group selection (Figure
2b) that selected the entire group as the training set, validation
set, or test set. In brief, the entire group includes a series of
experimental points and the characteristics of the adsorbents.
2.3. Modeling Methods and Hyperparameter Tuning.

Three tree-based ML algorithms (e.g., RF, DTs, and XGBoost)
were evaluated and compared to predict phosphate adsorption
on the adsorbents. Previous documents have proved that small
data sets (e.g., 200−1000 data points) were suitable for the
implementation of tree-based ML models;40,57,58 thus, the
collected data points (∼1800) were enough for ML modeling.
Hyperparameter tuning is an important process to find a set of
hyperparameters to achieve optimal model performance. The
optimal configuration of hyperparameter tuning was completed
by Python 3.10 with a scikit-learn package (SI Text S2). Grid
search, random search, and Bayesian optimization are the most
common hyperparameter tuning methods reported in the
literature. In the current study, the model hyperparameters
were tuned with the grid search method, considering its
reliability and easy implementation when tuning for a lower set
of input features.

2.3.1. Error Metrics. RMSE and R2 values were employed to
evaluate the performance of the RF models with different
evaluation metrics, XGBoost models with different kernels, and
DT models with different hyperparameters. It is known that
the lower the RMSE and the higher the R2, the greater the
model accuracy, as shown in eqs 3 and 4, respectively.

y y

n
RMSE

( )n
i i1

2

=
(3)

Figure 2. Two different data splitting methods (i.e., point selection and group selection). (a) Point selection: the test set is first filtered away from
15% of the data set. Then, the data in the training set and the validation set do not identify the experimental points (a particular isotherm) and are
divided into 70 and 15% from the rest of the data set. (b) Group selection: the selection of the test set is the same as point selection, but the
training set and the test set need to be divided into 70 and 15% from the rest of the data set according to groups of six experimental points on the
adsorption isotherm.
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where yi, ŷi, and y̅i represent the actual, predicted, and mean
values of the target feature, respectively, and n is the total
number of objects in the validation/test set.
2.3.2. Feature Importance. To quantify the contribution of

a specific input descriptor to the model is of great significance,
as tree-based models are typically black boxes. Shapley additive
explanation (SHAP), a package originating from Python
(details are given in SI Text S3), can be employed to
determine the Shapley values, which are generally used to
quantify the contribution of each input feature to the overall
adsorption performance and to evaluate whether the ML
models violated any adsorption rules. Mean absolute Shapley
(MAS) for an input feature is the mean of all of the Shapley
values of the feature. Conceptually, the larger the MAS value,
the more significant the descriptor in influencing the
phosphate adsorption process.

3. RESULTS AND DISCUSSION
3.1. Descriptive Statistics on Phosphate Adsorption.

Based on the output parameters, it was clear that the
equilibrium adsorption capacity was dependent on the dosage

of the adsorbent. However, there was a reciprocal restriction
between the two, indicating that increasing the dosage of the
adsorbent would lead to an increase in the equilibrium
adsorption capacity up to a certain point, after which the
capacity would start to decrease. This meant that there was an
optimal dosage of adsorbent that could be used to achieve the
maximum adsorption capacity. Furthermore, when evaluating
the adsorption process, it is more scientifically pertinent to
consider varying adsorbent capacities for the same dosage of
the adsorbent instead of just the adsorbent dosage. To
explicate the influence of different adsorbent dosages on the
adsorption capacity under different conditions, it was necessary
to determine the adsorption capacity of phosphate at the
equilibrium phosphate concentration.

In order to gain a deeper understanding of the adsorption
process, the raw data was systematically described and
analyzed. This involved identifying all of the input features
and target variables and then looking at minimum, maximum,
and average values using analytics. By doing this, it was
possible to acquire a preliminary insight into the raw data,
which set the foundation for further detailed analysis. Figure 3
presents a visual distribution of the input features and the
target variables in the form of box-normal plots. The maximum
and minimum phosphate adsorption capacities (ACs) were

Figure 3. Box-normal plots representing the descriptive statistics of the data for each feature collected from peer-reviewed papers. The data were
selected from 128 papers, which include both input and target features such as (a) adsorption capacity (AC, mg g−1), (b) equilibrium concentration
(EC, mg L−1), (c) surface area (SA, m2 g−1), (d) total pore volume (TPV, cm3 g−1), (e) average pore size (APS, nm), (f) temperature (T, K), (g)
pH, and (h) mass fraction of six metals: La (wt %), Al (wt %), Fe (wt %), Zr (wt %), Ca (wt %), and Mg (wt %).
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558.78 and 0.05 mg g−1, respectively, with an average value of
49.52 mg g−1 (Figure 3a). As shown in Figure 3b, the values of
equilibrium concentration (Ce) ranged from 0.1 to 800 mg
L−1, resulting in an average Ce value of 60.40 mg L−1. At the
same time, it is worth noting that a significant majority of the
data set (specifically, 94% of observations) had equilibrium
concentrations exceeding 10 mg L−1. This observation implies
that the model may have been optimized specifically for higher
concentration levels and may not be as effective for lower
values.19 The properties of adsorbents can be described by
analyzing the materials’ SA, TPV, and APS, among which SA
was reported in all of the literature. Previous documents also
indicated that SA and TPV were significantly influenced by
carbonization, activation treatment, and modification pro-
cesses.25,59 It can be noticed from Figure 3c−e that the values
of SA, TPV, and APS fluctuated significantly, with mean values
of 185.62 m2 g−1, 0.40 cm3 g−1, and 10.94 nm, respectively. To
enhance the phosphate adsorption performances, metal-
containing (e.g., La, Al, Fe, Zr, Ca, and Mg) adsorbents are
developed, considering their environmental friendliness and
high affinity for phosphate. The mass fraction of these metals
loaded on the materials conformed to a Gaussian distribution
(Figure 3h). In addition, the Shapley value was used to
evaluate the contribution of every descriptor. Considering the
lack of data about textual properties and the value of the exact
metal weight fraction in the raw data set, applying a strong
correlation algorithm could solve these problems and avoid
shrinking the amount of the data (SI Text S4). Apart from the
physicochemical characteristics of the adsorbents, operational
parameters such as temperature and pH also play crucial roles
in phosphate adsorption at liquid−solid interfaces.60,61 The
temperature will influence the random thermal motion of ions
in the solution,62 therefore resulting in the difference in
phosphate adsorption kinetics. In addition, the solution pH is
also closely related to factors including the net positive charge

on adsorbents’ surface and the form of aqueous phosphate
species.63 It can be observed from Figure 3f,g that most of the
experiments were conducted in normal conditions (e.g., the
temperature ranged from 298 to 302 K, and the pH ranged
from 5 to 7).

Figure 4 illustrates the PCC values among various individual
parameters. Most of these values reside within the range of
−0.5 to 0.5, indicating a lack of significant correlation between
the input variables. However, the top left corner of the figure
highlights noteworthy correlations, specifically between La, Zr,
Ca, Al, and Mg (PCC values: −0.84(La−Mg),0.79(Ca−Mg),
and 0.81(Al−Ca)). This observation suggests that these
parameters might be interdependent or interconnected,
necessitating further investigation to elucidate their influence
on the model output and optimize its performance. Three
plausible reasons for this phenomenon are as follows: (i) One
possible explanation for this phenomenon is that these two
metal ions exhibit similar affinity during the adsorption of
phosphate, resulting in their interactions causing concomitant
changes in their respective contents and consequently
displaying correlation.64 (ii) Another conceivable reason is
the synergistic effect of these metal ions during the phosphate
adsorption process. Their mutual interaction enhances their
interaction with phosphate, leading to concurrent alterations in
their respective contents and manifesting a correlation.65 (iii)
Moreover, other factors might also impact the correlation
between these metals. For instance, they may possess similar
attributes, such as charge (La3+, Al3+, Zr2+, Ca2+, and Mg2+)
and equil ibrium constant (K s p(LaPO4) = 22.43,
Ksp(Mg3(PO4)2) = 23.98), which contribute to a concomitant
trend in phosphate adsorption.
3.2. Different Algorithms and Data Splitting Ap-

proaches. In this study, models based on three tree-based
algorithms, RF, DT, and XGBoost, performed well in solving
this problem. According to the RMSE and R2 values, the model

Figure 4. Pearson correlation matrix for all of the set of features included in this study. No significant correlation among the input variables was
observed. La, Al, Fe, Zr, Ca, Mg, SA, TPV, APS, T, Ce, and AC denote lanthanum (wt %), aluminum (wt %), iron (wt %), zirconium (wt %),
calcium (wt %), magnesium (wt %), specific surface area (m2 g−1), total pore volume (cm3 g−1), average pore size (nm), temperature (K),
equilibrium concentration (mg L−1), and adsorption capacities (mg g−1), respectively.
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developed on DT and XGBoost can be accepted. However, the
RF model achieves the best performance and thus is selected
after comprehensively evaluating both R2 and RMSE. The
performances of the two data splitting methods (i.e., point
selection and group selection) are presented in Figure 5.

A large difference in RMSE values between the two sets was
observed in the point selection method, with the validation set
showing a much lower RMSE value compared to the test set.
In contrast, using the group selection approach resulted in
comparable RMSE values for the validation and test sets. In
addition, there was no obvious difference in RMSE values
between the test set in point selection method and the test/
validation set in the group selection method. These results
indicate that the validation set in the group selection method
can roughly reflect the prediction capability of the tree-based
algorithms on the test set, confirming the robustness of this
data splitting method.

The existence of the potential data leakage in the point
selection approach could be attributed to the above results.
The process of splitting randomly in the point selection
approach needs to be given more attention because some data
from a group would appear in the training set and the rest
would remain in the validation set. That is, data leakage leads
to overfitting, which to some extent, negatively influences the
prediction performance of the model.40,66 In this case, the
training set has already covered some features (i.e., adsorbent
properties and operational conditions) of the validation set in
point selection, resulting in lower RMSE values of the
validation set. However, the test set is independent of the
training set; thus, the model might not perform well for the test
set. For group selection, three data sets (i.e., training set,
validation set, and test set) are independent, leading to better
consistency in the prediction performance. In other words, this
method can achieve similar RMSE values for the validation set
and the test set. In contrast, the point selection method cannot
satisfy the goal.67 Therefore, the group selection method was
selected in this study.
3.3. Cosine Similarity. Previous documents reported that

when data distribution ranges in descriptor values are similar in
the training set, validation set, and test set, a smaller training
set can also achieve a relatively satisfactory prediction
performance for the test/validation set compared to that
using a much larger data set.68 That is, rather than using all the

collected data, we can select highly correlated data to build
models and predict target values by using algorithms such as
Cosine similarity,69 Euclidean distance,68 and City-block
distance.70 In addition to the problems that these algorithms
can solve, more consideration should be paid to whether the
algorithms conform to the physicochemical meaning of
phosphate adsorption processes. To generalize the above
finding, first, taking the cosine similarity, one of the different
methods, for example, the method can reflect the phys-
icochemical significance through the cosine value of the angle.
Unlike cosine similarity, the distance seems to have no relation
with the nature of the adsorption system. Second, these
methods in RF are employed for comparison in selecting the
training set. Then, through the calculation of the validation set
and the test set of the data set as the criteria, Figure 6 shows

that the cosine similarity method extensively yields better
performance (the RMSE is 0.215) than the Euclidean
approach (RMSE 0.381), which consecutively is better than
the city-block rule (RMSE 0.436).
3.4. Model Performance. Compared with tree-based

models, specifically RF, DT, and XGBoost, the RF model
achieved high accuracy in predicting the adsorption of
phosphate (Figure 7). All models are developed based on
the same data samples, among which hyperparameters are
tuned through the grid search. According to the features of
mining data, the content of each metal was not clear in terms
of the adsorbent. For devising and evaluating tree-based
models in the context of prediction, the input of the metal type
needs to be considered in the aforementioned method (details
are given in the Section 2.2). Therefore, on the one hand, it
can make full use of the limited amount of data to avoid data
set waste; on the other hand, for the prediction of the
adsorption effect, we analyze and qualitatively compare the
adaptability of various metals to the algorithm (Figure 7a−c).
At the same time, using the existing metal content of 654 data
points to establish three tree-based models, the RF is more
conducive to the practical application of analytical guidance
(Figure 7d−f).

Figure 7d−f shows that the actual content of the metal
makes the predictions of the model slightly broader compared
to the data set of the existing metal content. From Figure 7a−c,
the R2 values of tree-based ML models using the master data
set via the group method are as follows: XGBoost: validation
R2 = 0.986, test R2 = 0.962; RF: validation R2 = 0.990, test R2 =
0.984; and DT: validation R2 = 0.984, test R2 = 0.980. It

Figure 5. Different performances of data splitting approaches (e.g.,
point selection and group selection). It should be noticed that the
collected data was split into a training set (70%), validation set (15%),
and test set (15%), respectively.

Figure 6. Comparison of the performance based on three methods
selected: Euclidean distance (EU), cosine similarity (CS), and city-
block distance (CB). The prediction target in each of the three
methods was the same, and the difference was in the training sets.
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suggests that RF performs the best among the three models
with the highest R2 in test samples. Furthermore, the RF model
for the content of metals specifically also presents robustness
and reliability with the smallest RMSE of 0.650 (Table 1). In
addition, the effect of the doping of different metals on the
material is given in the following section.
3.5. Feature Importance Analysis. To determine the

most influential effects on phosphate adsorption, the Shapley
value and MAS were used to evaluate the contribution of each
descriptor to equilibrium adsorption (Figures 8 and 9, and
more details are in SI Figure S2). In this study, although the
RF model has the best performance, specific performance
needs to be conducted on the different sets mentioned above
in terms of practical application. According to the currently
collected data, the three strategies for processing data sets are
conducive to establishing models, predicting classification, and
acquiring material properties. The Shapley value originates
from game theory to solve the distribution in cooperation.71

The Shapley value can be quantified to express the donations
that are not equivalent for all factors in this study (Figures 8a,

9a, and S2a). The positive or negative Shapley values,
calculated by each descriptor in a certain system, represent
the positive or negative effects on the equilibrium adsorption
capacity, respectively, and vice versa. Furthermore, the effect of
all descriptors on the adsorption was assessed through MAS

Figure 7. Performance of three tree-based models for the adsorption of phosphate. The prediction based on the cosine similarity method is
acquired for each group of input data. (a−c) Different performances between the prediction and observation in the entire data set using XGBoost,
RF, and DT, respectively. (d−f) Results calculated through the existing metal content of 654 data points using XGBoost, RF, and DT, respectively.
The blue dot line represents the fitting line of the validation test, and the red solid line represents the fitting line of the test set.

Table 1. Summary of the Performance Based on Different
Algorithms by Comparison between Semiqualitative and
Quantitative Metals

algorithms validation R2 test R2 RMSE

XGBoosta 0.986 0.962 0.756
RFa 0.990 0.984 0.650
DTa 0.984 0.980 0.778
XGBoostb 0.973 0.966 0.699
RFb 0.968 0.956 0.695
DTb 0.952 0.910 0.796

aThe data range of original data sets, among which all of metal
content were treated as 0 and 1. bThe data range of 654 data points
included the existing metal content.
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values, which is the averaged value from all of the Shapley
values. As a result, the larger the MAS value of the descriptor,
the greater its effect on phosphate adsorption.

For data sets that treated metals as 0 and 1, SA performs the
most influential with the largest value of MAS of 0.26, given in
Figure 8b. Regardless of the type of metal, the total pore
volume and average pore size of the adsorbent contribute more
to the adsorption, followed by the properties of the solution
(Figure 9). It should be noted that the specific content of the
metal used to calculate the MAS values shows substantial
differences compared to the simplified method mentioned
above. From the perspective of adsorbent preparation, this is
very meaningful. That is, as shown in Figure 9b, the lanthanide
in these metals shows a great influence on the adsorption of
phosphate, followed by calcium, magnesium, and aluminum.
Instead, total pore volume has become the most influential
factor in adsorption, and it is also well understood that loading
metals depend on the porosity of the material. The equilibrium
concentration of phosphate in solution also has a great
influence on phosphate adsorption. This analysis is based on
the interpretation of the RF model built on Shapley as well as
MAS values. We found that the importance of the involved
features follows the order of TPV > Ce > La > SA > pH > Mg
> APS > Ca > T > Al > Fe > Zr in the specific percentages of
different metals in the adsorbent (Figure 9). As a result, we

conclude that the total pore volume and the equilibrium
concentration are the most influential factors for phosphate
adsorption in terms of the physicochemical meaning. These
results have been supported by previous studies, and some
examples can be found in their related literature works.72−74

To further study the influence of background ions in the
actual environment on phosphate adsorption, adsorption
removal experiments of phosphate solution containing other
ions (i.e., chloride ions (Cl−), nitrate ions (NO3

−), and
cadmium ions (Cd2+)) were selected in the literature.
However, there are few studies on isotherms for phosphate
and other ions in solution, so the data of phosphate adsorption
with background ions cannot well reflect the influence of other
ions on phosphate adsorption (details are given in the Section
3.6). According to the MAS value obtained from the existing
data analysis, the background ions have little interference with
the phosphate by other ions, which may be attributed to the
selectivity of the adsorbent material (SI Figure S2b).
3.6. Limitations of the Built Models. In the process of

model development, the tree-based model performs better
than other algorithms in terms of the RMSE and R2 metrics.
There are three main drawbacks that limit the practical
applications: (i) metal hydroxide/oxide materials, applied to
phosphate adsorption, need more precise descriptors for a
given material; the preparation and characterization of

Figure 8. (a) Shapley values of all descriptors in the adsorption of phosphate by distinguishing the existence of metals as 0 and 1 with all data
points and (b) mean absolute Shapley (MAS) values for all of the descriptors in the selected model. La, Al, Fe, Zr, Ca, and Mg denote lanthanum
(wt %), aluminum (wt %), iron (wt %), zirconium (wt %), calcium (wt %), and magnesium (wt %), respectively. SA, TPV, APS, T, and Ce denote
the surface area (m2 g−1), total pore volume (cm3 g−1), average pore size (nm), temperature (K), and equilibrium concentration (mg L−1),
respectively.

Figure 9. (a) Shapley values of all descriptors in the adsorption of phosphate by adding the definite content of the metal with partial data sets and
(b) mean absolute Shapley (MAS) values for all of the descriptors in the selected model. La, Al, Fe, Zr, Ca, and Mg denote lanthanum (wt %),
aluminum (wt %), iron (wt %), zirconium (wt %), calcium (wt %), and magnesium (wt %), respectively. SA, TPV, APS, T, and Ce denote the
surface area (m2 g−1), total pore volume (cm3 g−1), average pore size (nm), temperature (K), and equilibrium concentration (mg L−1), respectively.
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materials while ignoring the importance of applications will
result in the lack of the specific composition of material
quantification. (ii) For phosphate in natural lakes along with
actual wastewater, there are many interference factors (i.e.,
ionic species). In contrast, most studies only focus on the effect
of phosphate removal in a simulated environment, ignoring its
application in real wastewater. (iii) The concentration level of
a variable can indeed impact the effectiveness of a model, and
it may be necessary to adjust the model’s settings to ensure
that it can accommodate different ranges of data. Failing to do
so could potentially affect the model’s overall accuracy and
usefulness. After reviewing the literature, we found that such
high capacities are often reported at equilibrium concen-
trations much greater than 10 mg L−1, which may represent
unrealistic conditions affecting the model’s performance when
applied to more realistic, lower concentration levels in effluent
polishing scenarios. (iv) Many studies on phosphate
adsorption mainly concentrate on the adsorption process and
the materials and factors influencing it, often neglecting the
desorption and regeneration aspects. This dearth of
comprehensive information on desorption and regeneration
hampers the accumulation of sufficient data for applying
machine learning techniques to this facet of adsorbent
research. Nonetheless, this study highlights the necessary
targets and objectives for future phosphate adsorption
experiments. Incorporating descriptors such as the presence
of background ions, the composition of the adsorbent, and
adsorbent recyclability in experiments will contribute to
refining the model’s construction and understanding. Further
investigation into the analysis process mechanisms will
enhance the future applicability assessment of adsorbents in
practical scenarios.

4. ENVIRONMENTAL IMPLICATIONS
In this study, we employed a tree-based algorithm to build
robust, tuneable, and chemically meaningful models for
predicting phosphate adsorption in aqueous solutions, utilizing
1800 experimental data points from 128 studies. By employing
a group selection approach during model training and the
cosine similarity method for the original data, the improvement
in model performance was found to be reliant on data
preprocessing techniques. Although the accuracy of the ML
modeling process is contingent on data volume, the cosine
similarity method allows for better predictions based on a
limited number of experimental data sets.

With the interpretation of the RF model built on Shapley
and MAS values, we concluded that the total pore volume and
the equilibrium concentration are the most influential for
phosphate adsorption in terms of physicochemical significance.
Concurrently, lanthanide metal-loaded materials exhibited
superior performance compared to other metals. Owing to
the insights from this research, the next endeavors include the
following: (i) To improve the applicability of the adsorbent in
practical scenarios, it is crucial to conduct experiments that not
only focus on phosphate adsorption but also consider other
ions commonly present in wastewater, such as organic matter,
nitrate ions, and chloride ions. Through obtaining high-quality
characterization data from these experiments, the model can be
better constructed and understood, leading to more effective
use of the adsorbent; (ii) to develop an instructive synthesis
approach to achieve the maximum phosphate adsorption,
which will benefit from the rational design of adsorbents and
adsorption parameters; (iii) given the different environments

in which phosphates are located, consideration based on the
multiangle, deep-level, and all-round preparation of suitable
materials is applied in appropriate scenarios; and (iv) the open
database source that is convenient for other researchers need
to add new experimental data points for optimizing the model
in operational applications.
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