
1. Introduction
With advances in computing power and an improved understanding of science, General Circulation Models 
(GCMs) keep improving with each generation to better mimic the observed climate (Beadling et al., 2020; Fan 
et al., 2020; Wang et al., 2021). At the same time, it is well accepted that model development constraints create 
persistent biases in simulations (Beadling et al., 2020), limiting direct use in on-ground adaptation studies focused 
on future climates (Bollasina & Ming, 2013; Mehrotra et al., 2014; Randall et al., 2007). This has resulted in 
many alternatives being proposed to address systematic model biases and forms the focus of the present study.

Most bias correction approaches in use are tailored to correct specific statistical attributes, for example, mean 
and standard deviation, cross-correlation coefficient, persistence (Johnson & Sharma,  2012; Mehrotra & 
Sharma, 2015; Nguyen et al., 2016), or to mimic the simulated probability distribution to observations using vari-
ations of the Quantile Matching (QM) approach (Haerter et al., 2011; Li et al., 2010; Teutschbein & Seibert, 2013; 
Wood et al., 2004). The QM is a popular alternative to correct distributional biases but is univariate as tradition-
ally defined and ignores persistence and dependence biases. For climate model simulations to be used for water 
supply assessments, the representation of seasonal, annual, or over-the-year cycles that characterize observed 
physical phenomena needs consideration. For example, interannual rainfall variability in much of the world is 
largely a function of the Tropical Atlantic Sea Surface Temperature (TAV) and the El Niño-Southern Oscillation 
(ENSO) (Trauth et al., 2003). Inability to simulate these low-frequency variability modes in our climate may lead 
to an inaccurate estimation of the risk of water supply failure and impact planning and management decisions 
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(Johnson & Sharma, 2011; Mehrotra & Sharma, 2012). The importance of low-frequency variability bias in water 
resources applications has led to a suite of alternatives that correct for persistence across multiple time scales along 
with correcting for distributional bias (Johnson & Sharma, 2012; Mehrotra & Sharma, 2015; Ojha et al., 2013). 
The need for specifying nesting time-frames, while convenient to enable focus on both intra and inter-annual vari-
ability, limits the correction across the entire frequency spectrum. This has led to the development of rank space 
based and frequency analysis based bias correction approaches, for example, a three-dimensional bias correction 
(Mehrotra & Sharma, 2019) or fast Fourier transformation based bias correction (FBC) (Nguyen et al., 2016) 
or wavelet-based bias correction (WBC) (Kusumastuti et  al., 2021), the latter having the added advantage of 
operating in the time-frequency space and enabling correction of time-dependent attributes (such as trend). WBC 
employs the strength of discrete wavelet transform to obtain the underlying trend in climate variables time series 
and is hereafter referred to as discrete wavelet-based bias correction (DWBC).

While the elegance of the DWBC arises from the use of the discrete wavelet transform (DWT), widely adopted 
for a range of applications in climatology (Abramovich et al., 2000; Adarsh & Janga Reddy, 2015; Jiang, Rashid, 
et al., 2021; Jiang, Sharma, & Johnson, 2021; Jiang et al., 2020; Lin, et al., 2019; Maheswaran & Khosa, 2012; 
Nourani et al., 2018; Sang et al., 2013), it limits application to variability over defined ranges of the spectrum, 
as one can focus only on dyadic frequency components. Given the importance of low-frequency variability in a 
range of applications, and the distinct possibility of it corresponding to the non-dyadic spectrum, the use of DWT 
may miss crucial information.

Considering this, we propose here an approach that is designed to extend existing time-frequency domain correc-
tion alternatives to non-dyadic frequencies. The approach is based on continuous wavelet transform (CWT) and 
is hereafter referred to as continuous wavelet-based bias correction (CWBC) approach. CWT has been used 
extensively for frequency analysis of climate variables (Brunner & Gilleland, 2020; Rashid et al., 2018; 2020) 
and also to observe the trend and periodicities of climate indicator, the Pacific Decadal Oscillation (Adamowski 
et al., 2009), to observe the power of Nino3 sea surface temperature (Torrence & Compo, 1998), to observe the 
trend in rainfall (Rashid et al., 2018, 2020) and climate variability (Mahmood et al., 2019). As CWT captures the 
amplitude of events at finer frequencies, its use in a bias correction approach enables the characterization of vari-
ability across all frequency resolutions. The algorithm of the CWBC is presented in Section 2, while Section 3 is 
dedicated to discussing the application of CWBC to bias correct sea surface temperature in Niño 3.4 region and 
Arctic sea-ice extent. Conclusions are presented in Section 4.

2. Materials and Methods
2.1. Systematic Bias in the Frequency Domain

The amplitude of an event at the associated frequency of the climate variable could be extracted using spectral 
density analysis. To understand the bias in amplitude and frequency, we generate two synthetic sine waves time 
series, 𝐴𝐴 𝒙𝒙(𝒕𝒕) = 𝑨𝑨 𝐬𝐬𝐬𝐬𝐬𝐬(𝟐𝟐𝝅𝝅𝝅𝝅𝒕𝒕 + 𝜽𝜽) , exhibiting different amplitude 𝐴𝐴 (𝑨𝑨) , frequency 𝐴𝐴 (𝒇𝒇 ) , and phase 𝐴𝐴 (𝜽𝜽) (Figure 1a), for 

𝐴𝐴 𝒕𝒕 forms 512 data points at a time increment of 0.25. The first time series represents observations (solid-black 
line), having a constant amplitude of 2.2 and frequency of 0.025, while the second time series represent the 
raw-model simulation (solid-blue line) having a constant amplitude of 1.2, frequency of 0.001, and 15° phase 
shift from the first time series. The spectral density, estimated using wavelet global power spectra, 𝐴𝐴 𝑾𝑾

𝟐𝟐

(𝒔𝒔) (details 
in Section 2.2), is shown in Figure 1b and represents the amplitude at the associated frequency of both sine waves.

Most bias correction approaches including DWBC correct for biases in the mean and standard deviation. After 
the application of DWBC, a mismatched frequency 𝐴𝐴 (∆𝒇𝒇 ) can be seen as the gray-dashed line in Figure 1b. This 
is mainly due to the limited information on the frequency components obtained through DWT (defined only at 
dyadic frequencies).

2.2. Wavelet Analysis

Similar to DWT, CWT also disaggregates the time-frequency domain that characterizes the observed data; 
however, disaggregation occurs at finer frequencies creating a nearly continuous transformation. A CWT of a 
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discrete-time series,𝐴𝐴 𝒙𝒙𝒕𝒕 , is defined as the convolution of 𝐴𝐴 𝒙𝒙𝒕𝒕 with a scale 𝐴𝐴 (𝒔𝒔) , and a translated version of a wavelet 
function, 𝐴𝐴 𝝍𝝍

𝟎𝟎
(𝜼𝜼) . As per the convolution theorem, the wavelet transform is the inverse of a Fourier transform as in 

Equation 1 (Torrence & Compo, 1998).

𝑾𝑾 𝒕𝒕(𝒔𝒔) =

𝑻𝑻−𝟏𝟏
∑

𝒌𝒌=𝟎𝟎

𝒙𝒙𝒌𝒌𝝍𝝍
∗ (𝒔𝒔𝒔𝒔𝒌𝒌) 𝒆𝒆

𝒊𝒊𝒔𝒔𝒌𝒌𝒕𝒕𝒕𝒕𝒕𝒕 (1)

where 𝐴𝐴 𝝍𝝍 is the normalized wavelet mother function, 𝐴𝐴 𝝍𝝍
𝟎𝟎
(𝜼𝜼) , 𝐴𝐴 𝒙𝒙𝒌𝒌 is a discrete Fourier transform as in Equation 2, 𝐴𝐴 𝑾𝑾 𝒕𝒕(𝒔𝒔) 

is the wavelet coefficient, 𝐴𝐴 𝝎𝝎𝒌𝒌 is the angular frequency defined in Equation 3, 𝐴𝐴 𝒕𝒕 is the time index, 𝐴𝐴 𝒌𝒌 = 𝟎𝟎. . .𝑻𝑻 − 𝟏𝟏 is 
the frequency index, 𝐴𝐴 𝑻𝑻  is the number of points in the time series, and 𝐴𝐴 ∗ denotes the complex conjugate operator.

𝒙𝒙𝒌𝒌 =
𝟏𝟏

𝑻𝑻

𝑻𝑻−𝟏𝟏
∑

𝒕𝒕=𝟎𝟎

𝒙𝒙𝒕𝒕𝒆𝒆
−𝟐𝟐𝝅𝝅𝝅𝝅𝒌𝒌𝒕𝒕∕𝑻𝑻 (2)

𝝎𝝎𝒌𝒌 =

⎧

⎪

⎨

⎪

⎩

𝟐𝟐𝝅𝝅𝒌𝒌

𝑻𝑻 𝑻𝑻𝑻𝑻
, 𝒌𝒌 ≤

𝑻𝑻

𝟐𝟐

−
𝟐𝟐𝝅𝝅𝒌𝒌

𝑻𝑻 𝑻𝑻𝑻𝑻
, 𝒌𝒌 >

𝑻𝑻

𝟐𝟐

 (3)

In general, the wavelet mother function, 𝐴𝐴 𝝍𝝍
𝟎𝟎
(𝜼𝜼) , is defined as a complex numbered function. Therefore, the wavelet 

transform, 𝐴𝐴 𝑾𝑾 𝒕𝒕(𝒔𝒔) , is also complex and the transformation can be divided into a real part, ℜ{� �(�)} , and an imag-

inary part, ℑ{� �(�)} , or, an amplitude, 𝐴𝐴 |𝑾𝑾 𝒕𝒕(𝒔𝒔)| , and phase, 𝐴𝐴 𝜽𝜽 , tan−1
[

ℑ{� �(�)} ∕ℜ{� �(�)}
]

 . Consequently, the 

wavelet power spectrum can be defined as 𝐴𝐴 |𝑾𝑾 𝒕𝒕(𝒔𝒔)|
2 and the time-averaged power spectra, better known as the 

global wavelet spectrum, are as defined in Equation 4.

𝑾𝑾
𝟐𝟐

(𝒔𝒔) =
𝟏𝟏

𝑻𝑻

𝑻𝑻
∑

𝒕𝒕=𝟎𝟎

|𝑾𝑾 𝒕𝒕(𝒔𝒔)|
𝟐𝟐 (4)

where 𝐴𝐴 |𝑾𝑾 𝒕𝒕(𝒔𝒔)| has been expressed as 𝐴𝐴 𝑨𝑨 in the following section for illustration purposes.

Figure 1. Illustration of bias in amplitude and frequency, and the limitation a discrete wavelet-based bias correction (DWBC) alternative presents when used for 
correction. (a) Two sine wave time series having different amplitude 𝐴𝐴 (𝑨𝑨) , and phase 𝐴𝐴 (𝜽𝜽) , with one bias-corrected using DWBC. (b) The spectral density of the two time 
series before and after the application of DWBC.
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The mathematical concept of a wavelet transform, as a bandpass filter with a known response transform of the 
wavelet mother function, enables the reconstruction of time series either by deconvolution or the inverse filter. 
The reconstructed time series is then equal to the sum of real parts over all scales (Equation 5).

�� =
�����∕�

����(�)

�
∑

�=�

ℜ
{

� �
(

��
)}

��∕��
 (5)

For

𝒔𝒔𝒋𝒋 = 𝒔𝒔𝟎𝟎𝟐𝟐
𝒋𝒋𝒋𝒋𝒋𝒋

, 𝒋𝒋 = 𝟎𝟎, 𝟏𝟏,⋯,𝑱𝑱 (6)

𝑱𝑱 = 𝜹𝜹𝜹𝜹−𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥
𝟐𝟐
(𝑻𝑻 𝜹𝜹𝑻𝑻∕𝒔𝒔𝟎𝟎) (7)

where 𝐴𝐴 𝒔𝒔𝟎𝟎 is the smallest resolvable scale, 𝐴𝐴 𝑱𝑱  is the largest scale, and 𝐴𝐴 𝑪𝑪𝜹𝜹 is the reconstruction factor depends 
on the wavelet mother function (given in (Torrence & Compo, 1998)). In our experiment, we use the analytic 
Morlet  wavelet mother function with a frequency resolution of 𝐴𝐴 𝜹𝜹𝜹𝜹 as 0.1. Based on a sensitivity analysis, this 
frequency resolution was found adequate to match the current climate model simulations to the observation. 
Additional detail of wavelet mother functions used in CWT is presented in (Torrence & Compo, 1998).

2.3. Continuous-WBC (CWBC) Formulation

In the following, we denote the, 𝐴𝐴 𝒙𝒙𝒐𝒐𝒐𝒐 , 𝐴𝐴 𝒙𝒙𝒓𝒓𝒓𝒓 , and 𝐴𝐴 𝒙𝒙𝒓𝒓𝒓𝒓 as the time series representing observations, raw-current climate 
model simulations, and raw-future climate model simulations. The intent of any bias correction procedure is to 
form a model that maps 𝐴𝐴 𝒙𝒙𝒓𝒓𝒓𝒓 to 𝐴𝐴 𝒙𝒙𝒐𝒐𝒐𝒐 allowing the model to then transform 𝐴𝐴 𝒙𝒙𝒓𝒓𝒓𝒓 and determine the bias-corrected 
future. The CWBC formulation is based on the CWT described in Section  2.2 and aims to correct the bias 
illustrated in Figure 1 in both the amplitude of the spectrum as well as the phase. The following is the stepwise 
procedure to implement CWBC.

 1.  Preprocess the observation, 𝐴𝐴 𝒙𝒙𝒐𝒐𝒐𝒐 , raw-current, 𝐴𝐴 𝒙𝒙𝒓𝒓𝒓𝒓 , and raw-future, 𝐴𝐴 𝒙𝒙𝒓𝒓𝒓𝒓 , model simulations by removing season-
ality or trend, if present. Set the seasonality or trend removed time series to have zero mean for observation, 

𝐴𝐴 𝑿𝑿𝒐𝒐𝒐𝒐 , raw-current, 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 , and raw-future, 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 , model simulations.
 2.  Estimate the amplitude and phase of 𝐴𝐴 𝑿𝑿𝒐𝒐𝒐𝒐 , 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 , and 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 time-series using CWT. Let 𝐴𝐴 𝑨𝑨𝒐𝒐𝒐𝒐

𝒕𝒕 (𝒌𝒌) and 𝐴𝐴 𝜽𝜽𝒐𝒐𝒐𝒐
𝒕𝒕 (𝒌𝒌) as the 

amplitude and phase of 𝐴𝐴 𝑿𝑿𝒐𝒐𝒐𝒐 , 𝐴𝐴 𝑨𝑨𝒓𝒓𝒓𝒓
𝒕𝒕 (𝒌𝒌) and 𝐴𝐴 𝜽𝜽𝒓𝒓𝒓𝒓

𝒕𝒕 (𝒌𝒌) as the amplitude and phase of 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 , and 𝐴𝐴 𝑨𝑨
𝒓𝒓𝒓𝒓

𝒕𝒕
(𝒌𝒌) and 𝐴𝐴 𝜽𝜽

𝒓𝒓𝒓𝒓

𝒕𝒕
(𝒌𝒌) of 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 .

 3.  Map the amplitude and phase of each time series and estimate the bias correction factor for both amplitude, 
𝐴𝐴 ∆𝑨𝑨𝒕𝒕(𝒌𝒌) , and phase, 𝐴𝐴 ∆𝜽𝜽𝒕𝒕(𝒌𝒌) , by taking the difference across time and frequency as in Equations 8 and 9.

∆𝑨𝑨𝒕𝒕(𝒌𝒌) = 𝑨𝑨𝒐𝒐𝒐𝒐
𝒕𝒕 (𝒌𝒌) −𝑨𝑨𝒓𝒓𝒐𝒐

𝒕𝒕 (𝒌𝒌) (8)

∆𝜽𝜽𝒕𝒕(𝒌𝒌) = 𝜽𝜽𝒐𝒐𝒐𝒐
𝒕𝒕 (𝒌𝒌) − 𝜽𝜽𝒓𝒓𝒐𝒐

𝒕𝒕 (𝒌𝒌) (9)

 4a.  Bias correct 𝐴𝐴 𝑨𝑨𝒓𝒓𝒓𝒓
𝒕𝒕 (𝒌𝒌) and 𝐴𝐴 𝜽𝜽𝒓𝒓𝒓𝒓

𝒕𝒕 (𝒌𝒌) using Equations 8 and 9 to obtain the corrected amplitude, 
⌣
���

� (�) , and phase, 
⌣
���
� (�) , of 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 .

 4b.  Bias correct 𝐴𝐴 𝑨𝑨
𝒓𝒓𝒓𝒓

𝒕𝒕
(𝒌𝒌) and 𝐴𝐴 𝜽𝜽

𝒓𝒓𝒓𝒓

𝒕𝒕
(𝒌𝒌) using the same correction factors as the current climate in Equations 8 and 9 

to obtain the corrected amplitude, 
⌣
���

� (�) , and phase, 
⌣
���
� (�) , of 𝐴𝐴 𝑿𝑿𝒓𝒓𝒓𝒓 as in Equations 10 and 11.

⌣
���

� (�) = ���
� (�) + ∆��(�) (10)

⌣
���
� (�) = ���

� (�) + ∆��(�) (11)

 5a.  Transform back 
⌣
���

� (�) and 
⌣
���
� (�) into the time domain using inverse wavelet transform on Equation 5 to 

obtain corrected amplitude and frequency of raw-current model simulation, 
⌣
��� .
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 5b.  Transform back 
⌣
���

� (�) and 
⌣
���
� (�) into the time domain using inverse wavelet transform on Equation 5 to 

obtain corrected amplitude and frequency of raw-future model simulation, 
⌣
��� .

 6.  Reintroduce the seasonality or trend and bias-corrected mean from step 1 to 
⌣
��� and 

⌣
��� to obtain the 

bias-corrected current, 
⌣
��� , and future, 

⌣
��� , model simulation.

3. Data and Applications
3.1. Data

The performance of CWBC is demonstrated using two climate variables–Niño 3.4 sea surface temperature (SST) 
and Arctic sea-ice extent. The monthly SST in Niño 3.4 region from 1870–2014 is a reconstructed SST time series 
retrieved from The Climate Data Guide: Nino SST Indices (Nino 1 + 2, 3, 3.4, 4; ONI and TNI) which is availa-
ble at https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data. The SST Nino 3.4 used is based on the 
Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) data set (Rayner et al., 2003) (hereafter, 
HadISST). For modeled data, we pick the historical and future climate r1i1p1f1 simulations of CAMS-CSM1-0 
for representative concentration pathway (RCP) 2.6 (hereafter RCP2.6). Both data sets (hereafter, CAM-CSM1-0) 
are available on the CMIP6 website at https://esgf-node.llnl.gov/search/cmip6/.

The second variable used is the Arctic sea-ice extent (also used in (Kusumastuti et al., 2021)). The observed data 
of Arctic sea-ice extent in September from 1900–2010 is retrieved from the National Snow and Ice Data Center, 
National Aeronautics and Space Administration (NASA) of the USA. The current and future climate simula-
tions are obtained from the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change, 
IPCC (Flato et al., 2014). The current climate spans from 1900 to 2010 in Figure 9.24 of AR5, IPCC, and the 
future climate spans from 2011 to 2100 in Figure TS.17 (Stocker et al., 2013) formed as the ensemble means of 
37-CMIP5 models. Both data sets are available as 5 years-running mean of the raw variables.

Split-sample tests are conducted to test the model robustness. For Niño 3.4 sea surface temperature, the current 
period climate data is split into calibration (1870–1941) and validation periods (1942–2013). Similarly, for 
the Arctic sea-ice extent, the current climate data is split into calibration (1900–1955) and validation periods 
(1956–2009). The spectral densities of the calibration and validation periods are presented in Figures 2a and 2b 
for Niño 3.4 sea surface temperature and in Figures  2c and  2d for Arctic sea-ice extent. As anticipated, the 
model performs better in calibration in comparison to validation, and effectively bias corrects the magnitude 
and frequencies of events of both climate variables. As should be expected, the validation results, while not 
indicating a perfect match to the observations, do indicate the efficacy of the bias correction procedure that has 
been proposed. We do, however, note that it is advisable for the entire data record to be used to formulate the bias 
correction model, as a split-sample approach undertaken with limited data, is sub-optimal to when the entire data 
is used (Shen et al., 2022).

In the following sections, these two variables are bias-corrected using DWBC and CWBC. The results are then 
compared based on the power spectrum which is estimated using global wavelet power spectra. As described in 
Section 2.2, the wavelet power spectrum is equal to the power of wavelet coefficient, 𝐴𝐴 |𝑾𝑾 𝒕𝒕(𝒔𝒔)|

2 , while the power 

spectrum in each frequency is equal to the global wavelet spectra or the time-averaged of 𝐴𝐴 |𝑾𝑾 𝒕𝒕(𝒔𝒔)|
2 .

3.2. Niño 3.4 Sea Surface Temperature Simulations

The SST presented in the solid-black line in Figure 3a and the associated power spectrum in Figures 3b and 3c 
show strong power at three different frequencies of 0.025, 0.086, and 0.17. However, the raw CAM-CSM1-0 fails 
to simulate the second mode in the spectrum, indicating high power at two different frequencies of 0.03 and 0.16.

The power spectrum of DWBC bias-corrected CAM-CSM1-0 series is represented by the dashed-blue line in 
Figure 3b. The spectrum exhibits a large correction in amplitude in both the first and third dominant frequencies 
in the current climate. On the other hand, the power spectrum of CWBC bias-corrected series removes the biases 
in the amplitude as well as the frequency, as shown in the dashed-green line of Figure 3c. The results suggest 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
https://esgf-node.llnl.gov/search/cmip6/
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that CWBC outperforms DWBC by matching the observed amplitude and frequency in the current climate. As 
the correction factor remains unchanged for the future, the corrected CAM-CSM1-0 is expected to retain the 
frequency information of the raw-future data after correction.

3.3. Arctic Sea-Ice Extent Simulations

The Arctic sea-ice extent in September as shown in Figure  4, exhibits a significant decreasing trend that is 
projected until 2100. The current observed time series shows high amplitudes at three different frequencies of 
0.03, 0.057, and 0.12. On the other hand, the ensemble mean of raw CMIP5 simulations underestimates the 
magnitude of events across the time series as well as fails to simulate the three frequencies components by indi-
cating strong amplitudes at different frequencies 0.037 and 0.099.

Although DWBC significantly corrects for the biases in the power of sea-ice extent time series in the current 
climate (Figure 4b), it is unable to match the representation of the observed frequencies, a mathematical limita-
tion that was noted in the illustrative example in Figure 1. The bias correction of the amplitude of future sea-ice 
extent shows an unrealistic strong power at a higher frequency (Figure 4d). On the other hand, the application 
of CWBC shows significant improvements in representing both amplitude and frequencies (Figure  4c). The 
power spectrum of sea-ice extent in the current climate matches with that observed while for the future climate 
(Figure 4e), it demonstrates a correction that is different from what the DWBC approach presents.

It is worth noting that the Arctic sea-ice extent data set exhibits a significant decreasing trend since 1900 and is 
predicted to continue until 2100. In the application of CWBC, the bias in trend is corrected using the proposed 

Figure 2. Spectral density of the calibration period of (a) Niño 3.4 sea surface temperature and (b) Arctic sea-ice extent and the validation period of (c) Niño 3.4 sea 
surface temperature and (d) Arctic sea-ice extent.
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method in DWBC (Kusumastuti et al., 2021). The delta factor presented in Equations 9 and 10 in the paper is 
adopted in CWBC to maintain the continuity from the current to future climate. Therefore, as can be observed in 
Figure 4a, both DWBC and CWBC bias correct the trend in the current climate with respect to observation while 
maintaining it to the future climate.

4. Conclusions
A novel time-frequency domain approach for correcting biases in the magnitude and frequency of the events 
of climate model simulations is developed. To illustrate the utility of the approach and the implications of the 
correction logic to the power spectrum of the data, an example using two sine waves with different amplitudes 
and phases is presented. The discrete wavelet transform-based bias correction alternatives were demonstrated to 
be less effective in modeling non-dyadic frequencies leading to a possible mismatch in both the amplitude (or 
power) and the frequencies of the variables of interest. The continuous wavelet transform-based bias correction 
approach proposed here operates across a near-continuous frequency domain and is, therefore, able to identify the 
biases at non-dyadic frequencies as well.

The capability of CWBC is demonstrated using two climate variable time series–Niño 3.4 SST and Arctic sea-ice 
extent. These represent climate series that exhibit an obvious pattern of recurrence and trend. The application 
of two bias correction approaches shows that the fine resolution spectrum obtained through the CWT procedure 
ensures that the complete spectrum is well characterized and corrected for any systematic biases. The finer scale 
biases are missed out by other alternatives such as QM or DWT. The finer scale variability in a climate series 
plays an important role in characterizing the low frequency climatic phenomena, for example, the Pacific Decadal 
Oscillation, the Madden-Julian Oscillation, and the North Atlantic Oscillation amongst others.

Figure 3. Reconstructed, raw, and bias-corrected sea surface temperature (SST)-Niño 3.4 region (a); spectral density of observed, raw, and discrete wavelet-based bias 
correction (DWBC)-SST (b) and continuous wavelet-based bias correction (CWBC)-SST (c) for current climate; spectral density of raw SST of the current climate for 
RCP2.6 projection, and the DWBC-SST (d), and CWBC-SST (e).
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Data Availability Statement
The SST observation data sets are available at https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.
data while the monthly historical and future climate r1i1p1f1 simulations of CAMS-CSM1-0 for representa-
tive concentration pathway (RCP) 2.6 is available at https://esgf-node.llnl.gov/search/cmip6/. The Arctic sea-ice 
extent data is available at https://sos.noaa.gov/datasets/sea-ice-extent-arctic-only-1850-present/. The data used in 
Figure 4a. is extracted from Figure 9.24 of AR5, IPCC (Flato et al., 2014), and Figure TS.17 (Stocker et al., 2013).
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