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A B S T R A C T

Knowledge of impending drought can help significantly with water planning and management. This study in-
troduces a novel forecasting framework for decadal drought projection which relies on climate model projections 
of Sea Surface Temperature Anomaly (SSTA) indices over the next decade and a spectral transformation meth-
odology to maximise forecast skill. Decadal SSTA projections from the Decadal Climate Prediction Project (DCPP) 
undergo spectral transformation using Wavelet System Prediction (WASP). WASP modulates the frequency 
spectrum of predictor variables to better mimic the response spectrum of drought indices. The transformed SSTA 
indices are then used in a multiple linear regression (MLR) model to forecast drought indices across multiple time 
scales. This framework significantly improves drought forecasting skills, especially for lead times exceeding 24 
months. While demonstrated for Australia, the MLR-WASP framework is transferable to other regions, offering a 
reliable tool for long-term water resource management by projecting drought risk over the coming decade. The 
implications of this research extend beyond hydroclimatology, impacting environmental science and engineer-
ing, sustainable planning, and adaptation efforts to climate change.
Plain language summary: Projecting drought risk over the next decade is essential for effective long-term water 
resources management. This study presents a new framework that reliably projects drought conditions up to 10 
years ahead by optimizing decadal climate model data. It uses a spectral transformation technique to adjust 
predictors like Sea Surface Temperature Anomalies to better match drought patterns. These transformed pre-
dictors are then integrated into a regression model to forecast drought indices. When applied to Australia, this 
approach significantly outperformed existing methods, especially for 2-year forecasts. By combining advanced 
climate predictions with prediction-oriented data transformation, this framework enables reliable drought risk 
projections a decade out, offering invaluable insights for proactive planning in drought-prone regions worldwide.

1. Introduction

Projecting drought risk over the coming decade can significantly 
enhance water management and planning over a 10–20 year horizon 
(Deb et al., 2020; Liang et al., 2017; Roderick et al., 2020; Xu et al., 
2020). While climate model simulations of rainfall over the coming 
10–20 years have improved in quality, they remain of little relevance for 
such drought risk projections (Gu et al., 2019). In their absence, atten-
tion has focused on more reliable descriptors of climate variability, often 
embodied in Sea Surface Temperature Anomalies (SSTAs) (Westra and 
Sharma, 2010), which are better simulated by climate models than 
precipitation (Chikamoto et al., 2015; Choudhury et al., 2015; Johnson 
and Sharma, 2009; Liu et al., 2012; Meehl and Teng, 2014; Mehta et al., 
2013).

This study aims to develop a framework for forecasting drought 
across multiple scales and extending predictability to decadal time 
frames. Two existing developments can assist in this task. Firstly, the 
Decadal Climate Prediction Project (DCPP) provides near-term climate 
projections that capture climate signals and variability over the coming 
decades (Boer et al., 2016; IPCC, 2021; Moemken et al., 2021). These 
projections have shown particular promise in simulating SSTA as 
compared to direct measures of precipitation or drought (Mehrotra 
et al., 2014; Smith et al., 2019). Secondly, in addition to existing ap-
proaches for assessing and correcting systematic biases in climate model 
simulations (Mehrotra and Sharma, 2012; Nahar et al., 2017), there now 
exists a new possibility for overcoming limitations in simulated SSTA 
indices, through the use of a mathematical post-processing trans-
formation that modulates the frequency spectrum of predictor variables 
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to better correspond with that of the response (Jiang et al., 2020). This 
spectral transformation, referred to as the Wavelet System Prediction 
(WASP) (Jiang et al., 2021a), has been shown to optimize the predict-
ability of the response of interest by transforming the predictor variable 
into a “localized” predictor for each local response, imparting the 
highest predictive skill that is mathematically feasible (Jiang et al., 
2025; Jiang et al., 2023).

In this study, we modify the WASP transformation framework to 
explore its applicability to decadal drought forecasting. Specifically, we 
propose a novel and reliable forecasting framework that projects 
drought over the coming decade with significant improvements 
compared to existing approaches. The modeling framework uses a 
multiple linear regression (MLR) model for simplicity and has been 
termed the MLR-WASP forecasting framework in the remainder of this 
document.

2. Materials and methods

Projecting drought risk at a decadal time scale requires (a) climate 
model projections of climate indicators relevant to the onset and prop-
agation of drought, and (b) a mathematical framework that optimally 
utilizes these indicators to project drought robustly and accurately. In 
this section, we first introduce the SSTA indices from DCPP, followed by 
the target response of multi-scale drought indices, and then explain how 
the spectral transformation can create localized SSTA indices to enhance 
predictive performance.

2.1. Decadal projection skill for SSTA indices relevant to drought risk 
quantification

The DCPP, part of the Coupled Model Intercomparison Project 
(CMIP), investigates decadal climate prediction, predictability, and 
variability through retrospective forecasts, i.e., hindcasts, and ongoing 
production of decadal climate predictions (Boer et al., 2016; Eyring 

Fig. 1. Decadal projection skill of SSTA indices against varying lead times from the ensemble of five CMIP6 DCPP models, Ensemble, and the multi-model ensemble 
mean (MME).
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et al., 2016). It bridges seasonal-to-interannual predictions and long- 
term climate change projections, whose projection skills are influ-
enced by both the initial value problem and external forcing problem. A 
schematic of the contribution to forecast skill can be found in Fig. S1.

Ten SSTA indices derived from decadal climate projections, 
including Niño 3, Niño 4, Niño 3.4, the El Niño Modoki index (EMI), the 
Dipole Mode Index (DMI), the Indian Ocean East Pole Index (EPI), the 
Indian Ocean West Pole Index (WPI), the Indonesian Index (II), the 
Tasman Sea Index (TSI) and the Tropical Trans-basin Variability Index 
(TBV), have been shown to have a significant relationship with 
Australian rainfall (Choudhury et al., 2019; Schepen and Wang, 2015; 
Schepen et al., 2014). While other climate variables, such as soil mois-
ture or atmospheric circulation patterns, may also influence regional 
drought conditions, this study focuses on these ten SSTA indices to assess 
the performance of the proposed forecasting framework. To ensure 
robustness, we utilized SSTA projections from decadal hindcast simu-
lations with a total number of 41 decades, commencing from 1961 on-
wards, separated by a one-year interval covering the period from 1961 
to 2010. These projections were derived from five CMIP6 climate 
models, considering multi-models for robustness (Zhou et al., 2024). 
Detailed information on ten SSTA indices and five CMIP6 climate 
models used is presented in Tables S1 and S2.

Fig. 1 shows the decadal projection skill of SSTA indices against 
varying lead times from the ensemble of five CMIP6 DCPP models, 
denoted as Ensemble, and the multi-model ensemble mean (MME). 
Although the skill presented here is computed from the drift-corrected 
SSTA indices (Choudhury et al., 2017), the predictability of these 
indices decreases notably with increasing lead times. There is marginal 
skill when the lead time exceeds 24 months for most indices, with 
particularly poor skills for indices like II and DMI. The projection skill of 
raw decadal simulations can be found in Fig. S2, raising the question of 
how such limited skill indices can enable meaningful drought 
projections.

2.2. Standardized Precipitation Index for drought forecasting

The Standardized Precipitation Index (SPI) is widely utilized for 
drought assessment due to its simplicity and adaptability across variable 
time scales (Guttman, 1998; Hayes et al., 1999; Mishra and Desai, 2005). 
While other drought indices, such as the Standardized Precipitation 
Evapotranspiration Index (SPEI), account for temperature-induced 
changes in evaporative demand, SPI was selected for this study 
because of its broad applicability and exclusive reliance on precipita-
tion. This characteristic makes SPI particularly suitable for quantifying 
diverse drought types, from short-term flash droughts to prolonged 
multi-year droughts, which are important for agricultural and water 
resources management. For instance, soil moisture conditions respond 
to precipitation anomalies on relatively short time scales, while 
groundwater, streamflow, and reservoir storage reflect the longer-term 
precipitation deficits.

Initially introduced by McKee et al. (1993), the SPI calculation is 
comprised of two steps: (1) aggregation of precipitation over a specific 
period, and (2) transformation of one frequency distribution (e.g., 
gamma) of aggregated precipitation into a normal (Gaussian) distribu-
tion. This transformation standardizes the aggregated precipitation, so 
the SPI has a mean of zero and variance of one, thereby allowing 
consistent comparison across different regions and time scales. The SPI 
is commonly computed for various time scales such as 3, 6, and 12 
months, which capture different types of droughts, with shorter scales 
(e.g., 3–6 months) often associated with agricultural drought (Dai et al., 
2020) and longer scales (e.g., 12 months) related to hydrological 
drought (Vicente-Serrano, 2006). For these reasons, this study focuses 
on SPI covers 3, 6, and 12-month time scales. Observed gridded rainfall 
data for SPI calculation is obtained from the Australian Gridded Climate 
Data (AGCD)/Australian Water Availability Project (AWAP) led by the 
Bureau of Meteorology, Australia. The data was re-gridded from its 

original resolution of 0.05◦ × 0.05◦ to 2.5◦ × 2.5◦, accounting for the 
resolution of the DCPP model simulations used. The grid layout across 
Australia is illustrated in Fig. S3.

2.3. Drought forecasting framework using spectrally transformed decadal 
SSTA projections

To ensure robust and accurate drought projections, a mathematical 
framework that optimally uses these indicators is essential. This study 
introduces the MLR-WASP forecasting framework, which comprises two 
main components: data transformation using WASP and a predictive 
model utilizing MLR.

SSTA indices derived from the DCPP hindcasts are transformed using 
WASP according to the drought index at individual grids. These spec-
trally transformed indices are then integrated into stepwise linear 
regression, guided by the Akaike information criterion (AIC), to estab-
lish the MLR model. The forecasting model is developed for each lead 
month, with a two-fold cross-validation approach to evaluate its pre-
dictive performance. Forecast skill is quantified using correlation co-
efficients of forecasted drought indices across multiple aggregation 
periods (SPI3, 6, and 12 months) (Jiang et al., 2021a). These correla-
tions are compared with baseline, non-transformed, and spectrally 
transformed models, utilizing an ensemble of five DCPP model pro-
jections to ensure robustness in performance evaluation. The baseline 
model, which can be regarded as the empirical model, is an autore-
gressive order 1 model that uses the response variable (drought index) at 
lead 0 as predictor variables. Non-transformed and spectrally trans-
formed models, termed MLR and MLR-WASP models respectively, use 
all ten climate indices with and without spectral transformation, 
including the empirical component from the baseline model. The 
mathematical formulations of the three models are given as follows:

Empirical model (referred to as baseline model): 

SPIe
k,l = βe

0 + βe
1SPIk,0 + εe

l (1) 

Multiple linear regression (MLR) model: 

SPIk,l = SPIe
k,l + SPId

k,l 

SPId
k,l = βd

0 +
∑p

i=1
βd

i CIi
l + εd

l (2) 

where SPIk,l is the target response of time scales k months at lead time l 
months, and superscripts e and d represent the empirical and dynamical 
components of the model. SPIk,0 is known SPI with a time scale of k 
months at lead 0, and the SSTA index, CIi

l, represents the corresponding 
SSTA index derived from DCPP at lead l; β0 is the intercept while βi 
represents the regression coefficients of associated input variables, and 
εl is the error term of the model. p is the total number of predictors 
considered in the regression model.

The difference between the MLR and MLR-WASP models is the 
spectral transformation of the input predictors. As a result, the three 
models used in the study can be simplified as follows: 

Baseline : SPIe
k,l = f

(
SPIk,0

)
+ εe

l

MLR : SPIk,l = f
(
SPIk,0,CIl

1,2,..,p)+ εl

MLR-WASP: SPIʹk,l = f
(

SPIʹk,0,CÍl
1,2,..,p

)
+ έl

(3) 

where CÍl and SPÍk,0 represents the spectrally transformed CIl and SPIk,l 

corresponding to the SPI at a given lead time (l) and time scale (k). Note 
that stepwise linear regression is applied with the AIC as the means for 
model selection, and thus the total number of predictors, p, included in 
MLR and MLR-WASP models might be different. As a result, three 
forecast models are assessed from lead 1 to 60 months using 41 data 
points (from 41 decades) with two-fold cross-validation.

To sum up, a flowchart depicting the above formulations is presented 
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in Fig. 2, and the proposed decadal drought forecasting framework is 
composed of three stages, including decadal prediction of SST and 
spectral transformation, model setup under two-fold cross-validation, as 
well as the assessment of forecast skill from three aspects.

3. Results and discussions

The developed drought forecasting framework is assessed using SSTA 
projections from a multi-model ensemble for SPI at multiple time scales. 
The spectral or decomposition-based approach has shown great poten-
tial in the context of forecasting in different fields such as rainfall 
forecasting (Quilty and Adamowski, 2021; Tao et al., 2023), drought 
prediction (Ghozat et al., 2023), and wind power prediction (Chen et al., 
2022). Here, we will present the capability of this proposed framework 
in long-lead drought forecasting across multiple time scales.

3.1. Multi-model forecast skill of SPI12 using spectrally transformed 
SSTA projections

To assess the capability and robustness of the proposed forecasting 
framework, Fig. 3 compares the forecast skill of SPI12 using spectrally 

transformed SSTAs across three models within the ensemble of five 
CMIP6 models, shown as color bands, with their ensemble mean illus-
trated as solid lines. The prediction skill along lead time was smoothed 
using loess to account for the input and model uncertainty. The associ-
ated contribution of each SSTA index to the forecast skill is further 
examined in Fig. S4 of the Supplementary material.

The results demonstrate that the baseline model consistently per-
formed worse compared to the other models, except for the short lead 
times during validation, where the empirical component plays a major 
role in the forecast skill. Fig. S4(a) illustrates the regression coefficients 
of the MLR against lead time, highlighting the empirical component’s 
predominant contribution to forecast skill, with coefficients substan-
tially higher than those of other predictors (SSTA indices). Overall, the 
MLR-WASP model outperforms other approaches, especially at longer 
lead times, with skill levels exceeding the 90 % significance threshold 
(0.26, corresponding to the 39 degrees of freedom, as we have 41 de-
cades in total). In contrast, models without spectral transformation 
exhibit a marked decrease in forecast skill, becoming insignificant 
beyond 12 months.

Two primary factors contribute to the superior performance of the 
MLR-WASP model. First, spectral transformation enhances the 

Fig. 2. The proposed decadal drought forecasting framework includes three stages: decadal prediction of SST and spectral transformation, model setup under two- 
fold cross-validation, as well as the assessment of forecast skill from three aspects.
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correlation between SSTA indices and drought conditions, improving 
the predictive utility of these indices. Second, as shown in Fig. S4(b), the 
MLR-WASP model incorporates a broader range of relevant predictors, 

identifying approximately one additional predictor compared to the 
referenced MLR model. This expanded predictor set improves the 
model’s ability to capture multi-scale climate variability, further 

Fig. 3. Improved forecasting skill of SPI12 using spectrally transformed SSTAs across the ensemble of five CMIP6 models, shown as color bands, with their ensemble 
mean given in solid lines. Improvements are shown under the calibration and validation. The black dashed line marks the 90 % significant correlation value.

Fig. 4. (a) Comparison of forecast skills of Standardized Precipitation Index (SPI) between non-transformed and transformed models across multiple time scales using 
multi-model ensemble mean. (b) Comparison between MLR and MLR-WASP models across all lead times. The grey dashed line marks the 90 % significant correlation 
value. Purple points represent forecast skill of lead time larger than time scales of drought indices, while blue points stand for those of lead time smaller than the time 
scales of drought indices. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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enhancing forecast skill.
This enhancement in performance underscores the effectiveness of 

the MLR-WASP framework in capturing decadal drought dynamics. The 
spectral transformation process optimizes predictor variables, aligning 
them more closely with drought patterns and thereby improving forecast 
accuracy (Jiang et al., 2020). Additionally, the MLR-WASP model’s 
ability to identify and incorporate a greater number of predictors en-
hances its predictive power, enabling more comprehensive and robust 
drought projections. These findings are consistent with previous studies 
emphasizing the importance of advanced modeling techniques and data 
transformations in improving hydroclimate forecasts (Khan et al., 2017; 
Kim et al., 2023). By leveraging spectral transformation and regression 
modeling, the MLR-WASP framework represents a significant advance-
ment in decadal drought forecasting.

3.2. Multi-scale SPI forecasts using spectrally transformed SSTA 
projections

As noted, the SPI effectively captures various drought types, with 
shorter timescales (e.g., 3–6 months) typically associated with agricul-
tural drought, and longer timescales (e.g., 12 months) linked to hydro-
logical drought. Many previous studies have SPI across multiple 
timescales to differentiate drought types (Dai et al., 2020; Lloyd-Hughes 
and Saunders, 2002; Szalai et al., 2000; Vicente-Serrano, 2006). To 
broaden the framework’s applicability, assessing its performance at 
varied timescales is essential. Fig. 4 illustrates the forecast skills of SPI 
across multiple time scales, including (a) SPI3, (b) SPI6, and (c) SPI12, 
comparing three different forecast models. Fig. 4(a) presents that the 
model with spectral transformation (MLR-WASP) significantly out-
performs the non-transformed models (Baseline and MLR), with the p- 
value of the Wilcoxon test less than the significance level, α = 0.05. 
Compared to the Baseline mode, the MLR model exhibits significantly 
higher forecast skill, but this skill drops notably thereafter. On the other 
hand, as shown in Fig. 4(b), the MLR-WASP model consistently shows 
higher forecast skill than the MLR model across all lead months. While 
the forecast skill at longer leads decreases sharply with respect to the 
time scales of drought indices (i.e., those longer than 3, 6, and 12 
months), most of them remain above the 90 % significance threshold. 
The diminished forecast skill with increasing lead time primarily stems 
from decreased projection skill in SSTA indices, a trend observed across 
all methods. However, spectral transformation extends the effective 
forecasting horizon, maintaining significant forecast skill up to 24 
months. Beyond two years, forecast skill shows minimal variation across 
all models, as depicted in Fig. S5. Additionally, it is found that the 
turning point of forecast skills corresponds with the time scales of 
drought indices, suggesting that the empirical component may have a 
limited contribution to forecast skills. Further details are provided in 
Fig. S4.

These findings further underscore the importance of spectral trans-
formation in enhancing the performance of decadal drought forecasting 
models. By improving the alignment between predictor variables and 
drought patterns, spectral transformation enables more accurate and 
reliable forecasts across various time scales. This aligns with previous 
research emphasizing the significance of advanced modeling techniques 
and data transformations in enhancing climate forecasts (Jiang et al., 
2021b).

Drought propagation is a multifaceted process that unfolds across 
both temporal and spatial dimensions, significantly impacting various 
components of the hydrological cycle. In this study, we focus on drought 
prediction using decadal SST anomalies at individual grid points. 
However, as droughts propagate, their spatial extent and connectivity 
can change. For example, in Central Europe, droughts tend to have 
larger spatial extents as they propagate from precipitation to stream-
flow, but this extent decreases when reaching groundwater due to 
subsurface heterogeneity (Brunner and Chartier-Rescan, 2024). While 
we acknowledge the importance of spatial prediction, incorporating 

spatial variability into the drought forecasting framework requires 
advanced methodological approaches, such as multivariate prediction 
models (Ali et al., 2019; Hao et al., 2016). Future research will aim to 
integrate these approaches to enhance predictive capabilities across 
different spatial scales and validate them in other regions under 
different climatic conditions. Understanding the temporal and spatial 
dynamics of drought propagation is essential for effective drought 
management and mitigation. This knowledge helps in developing early 
warning systems and informing robust water resource management 
strategies that consider both upstream and downstream interactions 
(Han et al., 2023; Schilstra et al., 2024). By integrating these insights, 
policymakers and water managers can improve drought preparedness 
and response, thereby reducing adverse impacts on agriculture, water 
resources, and socio-economic sustainability.

4. Conclusions

This study introduces the MLR-WASP framework, a novel and reli-
able tool for decadal drought projection. By integrating decadal climate 
projections from the DCPP with the spectral transformation technique 
(WASP), this framework optimizes the spectrum of predictor variables 
(SSTAs) to better align with the response variable (drought index). The 
transformed SSTAs are then employed in a multiple linear regression 
(MLR) model to forecast drought indices across multiple time scales.

Results indicate that the MLR-WASP framework outperforms existing 
approaches, including the baseline model (the empirical component 
only model) and non-transformed MLR model. The spectral trans-
formation of SSTAs enhances their association with drought indices and 
enables the inclusion of more relevant predictors in the MLR model. 
Consequently, the MLR-WASP framework achieves significant forecast 
skills for drought indices up to 24 months ahead, surpassing non- 
transformed models that exhibit decreasing skills beyond 12 months.

The MLR-WASP framework offers a promising approach to extend 
drought predictability to decadal time frames, addressing the critical 
need for long-term drought risk assessment and water resource man-
agement. Future research could explore further refinements to the MLR- 
WASP framework, including the incorporation of additional climate 
variables, the extension of multivariate predicton across various spatial 
scales, and the exploration of real-time forecasting using decadal climate 
forecasts. Additionally, assessing the framework’s performance across 
different regions and under different climatic zones would provide 
valuable insights into its robustness and applicability in diverse settings. 
Continued research efforts in these areas will contribute to advancing 
our understanding of decadal drought forecasting and enhancing pre-
paredness for future water resource challenges. The enhanced predictive 
capabilities can help mitigate the impacts of drought on ecosystems, 
agriculture, and water resources, ultimately contributing to more resil-
ient environmental management strategies.
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Supplementary data to this article can be found online at https://doi. 
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Data availability

Decadal Climate Prediction Project (DCPP) runs of GCM models are 
part of Phase 6 of the Coupled Model Intercomparison Project (CMIP). 
The World Climate Research Program’s Working Group on Coupled 
Modeling is responsible for CMIP, and relevant model outputs are 
accessible online at https://esgf-node.llnl.gov/search/cmip6/. 
Observed SSTA data are derived from monthly SST values of the Hadley 
Centre Global Ice and Seal Surface Temperature (HadISST) dataset: 
https://www.metoffice.gov.uk/hadobs/hadisst/. Observed gridded 
rainfall data for SPI calculation is obtained from the Australian Gridded 
Climate Data (AGCD)/Australian Water Availability Project (AWAP) led 
by the Bureau of Meteorology, Australia: http://www.bom.gov. 
au/climate/data/.

References

Ali, M., Deo, R.C., Maraseni, T., et al., 2019. Improving Spi-derived drought forecasts 
incorporating synoptic-scale climate indices in multi-phase multivariate empirical 
mode decomposition model hybridized with simulated annealing and kernel ridge 
regression algorithms. J. Hydrol. 576, 164–184. https://doi.org/10.1016/j. 
jhydrol.2019.06.032.

Boer, G.J., Smith, D.M., Cassou, C., et al., 2016. The decadal climate prediction project 
(Dcpp) contribution to Cmip6. Geosci. Model Dev. 9 (10), 3751–3777. https://doi. 
org/10.5194/gmd-9-3751-2016.

Brunner, M.I., Chartier-Rescan, C., 2024. Drought spatial extent and dependence increase 
during drought propagation from the atmosphere to the hydrosphere. Geophys. Res. 
Lett. 51 (6). https://doi.org/10.1029/2023GL107918.

Chen, Y.S., Yu, S., Islam, S., et al., 2022. Decomposition-based wind power forecasting 
models and their boundary issue: an in-depth review and comprehensive discussion 
on potential solutions. Energy Rep. 8, 8805–8820. https://doi.org/10.1016/j. 
egyr.2022.07.005.

Chikamoto, Y., Timmermann, A., Luo, J.-J., et al., 2015. Skilful multi-year predictions of 
tropical trans-basin climate variability. Nat. Commun. 6 (1), 6869. https://doi.org/ 
10.1038/ncomms7869.

Choudhury, D., Mehrotra, R., Sharma, A., et al., 2019. Effectiveness of Cmip5 decadal 
experiments for interannual rainfall prediction over Australia. Water Resour. Res. 55 
(8), 7400–7418. https://doi.org/10.1029/2018WR024462.

Choudhury, D., Sen Gupta, A., Sharma, A., et al., 2017. An assessment of drift correction 
alternatives for Cmip5 decadal predictions. J. Geophys. Res. Atmos. 122 (19), 
10282–210296. https://doi.org/10.1002/2017JD026900.

Choudhury, D., Sharma, A., Sivakumar, B., et al., 2015. On the predictability of Ssta 
indices from Cmip5 decadal experiments. Environ. Res. Lett. 10 (7), 074013. https:// 
doi.org/10.1088/1748-9326/10/7/074013.

Dai, M., Huang, S., Huang, Q., et al., 2020. Assessing agricultural drought risk and its 
dynamic evolution characteristics. Agric. Water Manage. 231, 106003. https://doi. 
org/10.1016/j.agwat.2020.106003.

Deb, P., Moradkhani, H., Abbaszadeh, P., et al., 2020. Causes of the widespread 
2019–2020 Australian bushfire season. Earth’s Future 8 (11), e2020EF001671. 
https://doi.org/10.1029/2020EF001671.

Eyring, V., Bony, S., Meehl, G.A., et al., 2016. Overview of the coupled model 
intercomparison project phase 6 (Cmip6) experimental design and organization. 
Geosci. Model Dev. 9 (5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016.

Ghozat, A., Sharafati, A., Asadollah, S., et al., 2023. A novel intelligent approach for 
predicting meteorological drought based on satellite-based precipitation product: 
application of an Emd-Dfa-Dbn hybrid model. Comput. Electron. Agric. 211. https:// 
doi.org/10.1016/j.compag.2023.107946.

Gu, L., Chen, J., Xu, C.-Y., et al., 2019. The contribution of internal climate variability to 
climate change impacts on droughts. Sci. Total Environ. 684, 229–246. https://doi. 
org/10.1016/j.scitotenv.2019.05.345.

Guttman, N.B., 1998. Comparing the palmer drought index and the standardized 
precipitation index. J. Am. Water Resour. Assoc. 34 (1), 113–121. https://doi.org/ 
10.1111/j.1752-1688.1998.tb05964.x.

Han, Z., Huang, S., Zhao, J., et al., 2023. Long-chain propagation pathways from 
meteorological to hydrological, agricultural and groundwater drought and their 
dynamics in China. J. Hydrol. 625. https://doi.org/10.1016/j.jhydrol.2023.130131.

Hao, Z., Hao, F., Singh, V.P., 2016. A general framework for multivariate multi-index 
drought prediction based on multivariate ensemble streamflow prediction (Mesp). 
J. Hydrol. 539, 1–10. https://doi.org/10.1016/j.jhydrol.2016.04.074.

Hayes, M.J., Svoboda, M.D., Wiihite, D.A., et al., 1999. Monitoring the 1996 drought 
using the standardized precipitation index. Bull. Am. Meteorol. Soc. 80 (3), 429–438. 
https://doi.org/10.1175/1520-0477(1999)080<0429:Mtduts>2.0.Co;2.

IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working 
Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change (ISBN 978-1-107-66182-0). Retrieved from Cambridge, United Kingdom and 
New York, NY, USA: https://www.ipcc.ch/report/ar6/wg1/.

Jiang, Z., Choudhury, D., Sharma, A., 2025. Spectrally transformed Cmip6 decadal 
projections improve interannual rainfall forecasts. J. Hydrol. 655, 132870. https:// 
doi.org/10.1016/j.jhydrol.2025.132870.

Jiang, Z., Johnson, F., Sharma, A., 2023. Do derived drought indices better characterize 
future drought change? Earth’s Future 11 (7), e2022EF003350. https://doi.org/ 
10.1029/2022EF003350.

Jiang, Z., Rashid, M.M., Johnson, F., et al., 2021a. A wavelet-based tool to modulate 
variance in predictors: an application to predicting drought anomalies. Environ. 
Model. Softw. 135, 104907. https://doi.org/10.1016/j.envsoft.2020.104907.

Jiang, Z., Sharma, A., Johnson, F., 2020. Refining predictor spectral representation using 
wavelet theory for improved natural system modeling. Water Resour. Res. 56 (3). 
https://doi.org/10.1029/2019WR026962.

Jiang, Z., Sharma, A., Johnson, F., 2021b. Variable transformations in the spectral 
domain – implications for hydrologic forecasting. J. Hydrol. 603, 126816. https:// 
doi.org/10.1016/j.jhydrol.2021.126816.

Johnson, F., Sharma, A., 2009. Measurement of Gcm skill in predicting variables relevant 
for hydroclimatological assessments. J. Clim. 22 (16), 4373–4382. https://doi.org/ 
10.1175/2009jcli2681.1.

Khan, M.Z.K., Sharma, A., Mehrotra, R., 2017. Global seasonal precipitation forecasts 
using improved sea surface temperature predictions. J. Geophys. Res. Atmos. 122 
(9), 4773–4785. https://doi.org/10.1002/2016JD025953.

Kim, J.E., Yoo, J., Kwon, H.-H., et al., 2023. Comprehensive drought risk assessment 
using structural equation modeling and objective weighting methods. J. Hydrol.: 
Reg. Stud. 50, 101538. https://doi.org/10.1016/j.ejrh.2023.101538.

Liang, X.-Z., Wu, Y., Chambers, R.G., et al., 2017. Determining climate effects on us total 
agricultural productivity. Proc. Natl. Acad. Sci. 114 (12), E2285–E2292. https://doi. 
org/10.1073/pnas.1615922114.

Liu, C., Allan, R.P., Huffman, G.J., 2012. Co-variation of temperature and precipitation in 
Cmip5 models and satellite observations. Geophys. Res. Lett. 39 (13). https://doi. 
org/10.1029/2012GL052093.

Lloyd-Hughes, B., Saunders, M.A., 2002. A drought climatology for Europe. Int. J. 
Climatol. 22 (13), 1571–1592. https://doi.org/10.1002/joc.846.

McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and 
duration to time scales. Paper Presented at the Proceedings of the 8th Conference on 
Applied Climatology.

Meehl, G.A., Teng, H., 2014. Regional precipitation simulations for the mid-1970s shift 
and early-2000s hiatus. Geophys. Res. Lett. 41 (21), 7658–7665. https://doi.org/ 
10.1002/2014GL061778.

Mehrotra, R., Sharma, A., 2012. An improved standardization procedure to remove 
systematic low frequency variability biases in Gcm simulations. Water Resour. Res. 
48 (12). https://doi.org/10.1029/2012WR012446.

Mehrotra, R., Sharma, A., Bari, M., et al., 2014. An assessment of Cmip5 multi-model 
decadal hindcasts over Australia from a hydrological viewpoint. J. Hydrol. 519, 
2932–2951. https://doi.org/10.1016/j.jhydrol.2014.07.053.

Mehta, V.M., Wang, H., Mendoza, K., 2013. Decadal predictability of tropical basin 
average and global average sea surface temperatures in Cmip5 experiments with the 
Hadcm3, Gfdl-Cm2.1, Ncar-Ccsm4, and Miroc5 global earth system models. 
Geophys. Res. Lett. 40 (11), 2807–2812. https://doi.org/10.1002/grl.50236.

Mishra, A.K., Desai, V.R., 2005. Spatial and temporal drought analysis in the Kansabati 
River Basin, India. Int. J. River Basin Manage. 3 (1), 31–41. https://doi.org/ 
10.1080/15715124.2005.9635243.

Moemken, J., Feldmann, H., Pinto, J.G., et al., 2021. The regional miklip decadal 
prediction system for Europe: Hindcast skill for extremes and user-oriented 
variables. Int. J. Climatol. 41 (S1), E1944–E1958. https://doi.org/10.1002/ 
joc.6824.

Nahar, J., Johnson, F., Sharma, A., 2017. Assessing the extent of non-stationary biases in 
GCMs. J. Hydrol. 549, 148–162.

Quilty, J., Adamowski, J., 2021. A maximal overlap discrete wavelet packet transform 
integrated approach for rainfall forecasting – a case study in the awash River Basin 
(Ethiopia). Environ. Model. Softw. 144, 105119. https://doi.org/10.1016/j. 
envsoft.2021.105119.

Z. Jiang and A. Sharma                                                                                                                                                                                                                       Journal of Hydrology X 27 (2025) 100203 

7 

https://doi.org/10.1016/j.hydroa.2025.100203
https://doi.org/10.1016/j.hydroa.2025.100203
https://esgf-node.llnl.gov/search/cmip6/
https://www.metoffice.gov.uk/hadobs/hadisst/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
https://doi.org/10.1016/j.jhydrol.2019.06.032
https://doi.org/10.1016/j.jhydrol.2019.06.032
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.1029/2023GL107918
https://doi.org/10.1016/j.egyr.2022.07.005
https://doi.org/10.1016/j.egyr.2022.07.005
https://doi.org/10.1038/ncomms7869
https://doi.org/10.1038/ncomms7869
https://doi.org/10.1029/2018WR024462
https://doi.org/10.1002/2017JD026900
https://doi.org/10.1088/1748-9326/10/7/074013
https://doi.org/10.1088/1748-9326/10/7/074013
https://doi.org/10.1016/j.agwat.2020.106003
https://doi.org/10.1016/j.agwat.2020.106003
https://doi.org/10.1029/2020EF001671
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1016/j.compag.2023.107946
https://doi.org/10.1016/j.compag.2023.107946
https://doi.org/10.1016/j.scitotenv.2019.05.345
https://doi.org/10.1016/j.scitotenv.2019.05.345
https://doi.org/10.1111/j.1752-1688.1998.tb05964.x
https://doi.org/10.1111/j.1752-1688.1998.tb05964.x
https://doi.org/10.1016/j.jhydrol.2023.130131
https://doi.org/10.1016/j.jhydrol.2016.04.074
https://doi.org/10.1175/1520-0477(1999)080<0429:Mtduts>2.0.Co;2
https://www.ipcc.ch/report/ar6/wg1/
https://doi.org/10.1016/j.jhydrol.2025.132870
https://doi.org/10.1016/j.jhydrol.2025.132870
https://doi.org/10.1029/2022EF003350
https://doi.org/10.1029/2022EF003350
https://doi.org/10.1016/j.envsoft.2020.104907
https://doi.org/10.1029/2019WR026962
https://doi.org/10.1016/j.jhydrol.2021.126816
https://doi.org/10.1016/j.jhydrol.2021.126816
https://doi.org/10.1175/2009jcli2681.1
https://doi.org/10.1175/2009jcli2681.1
https://doi.org/10.1002/2016JD025953
https://doi.org/10.1016/j.ejrh.2023.101538
https://doi.org/10.1073/pnas.1615922114
https://doi.org/10.1073/pnas.1615922114
https://doi.org/10.1029/2012GL052093
https://doi.org/10.1029/2012GL052093
https://doi.org/10.1002/joc.846
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0150
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0150
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0150
https://doi.org/10.1002/2014GL061778
https://doi.org/10.1002/2014GL061778
https://doi.org/10.1029/2012WR012446
https://doi.org/10.1016/j.jhydrol.2014.07.053
https://doi.org/10.1002/grl.50236
https://doi.org/10.1080/15715124.2005.9635243
https://doi.org/10.1080/15715124.2005.9635243
https://doi.org/10.1002/joc.6824
https://doi.org/10.1002/joc.6824
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0185
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0185
https://doi.org/10.1016/j.envsoft.2021.105119
https://doi.org/10.1016/j.envsoft.2021.105119


Roderick, T.P., Wasko, C., Sharma, A., 2020. An improved covariate for projecting future 
rainfall extremes? Water Resour. Res. 56 (8), e2019WR026924. https://doi.org/ 
10.1029/2019WR026924.

Schepen, A., Wang, Q.J., 2015. Model averaging methods to merge operational statistical 
and dynamic seasonal streamflow forecasts in Australia. Water Resour. Res. 51 (3), 
1797–1812. https://doi.org/10.1002/2014wr016163.

Schepen, A., Wang, Q.J., Robertson, D.E., 2014. Seasonal forecasts of Australian rainfall 
through calibration and bridging of coupled Gcm outputs. Mon. Weather Rev. 142 
(5), 1758–1770. https://doi.org/10.1175/MWR-D-13-00248.1.

Schilstra, M., Wang, W., van Oel, P.R., et al., 2024. The effects of reservoir storage and 
water use on the upstream–downstream drought propagation. J. Hydrol. 631. 
https://doi.org/10.1016/j.jhydrol.2024.130668.

Smith, D.M., Eade, R., Scaife, A.A., Caron, L.-P., Danabasoglu, G., DelSole, T.M., 
Delworth, T., Doblas-Reyes, F.J., Dunstone, N.J., Hermanson, L., Kharin, V., 
Kimoto, M., Merryfield, W.J., Mochizuki, T., Müller, W.A., Pohlmann, H., Yeager, S., 
Yang, X., 2019. Robust skill of decadal climate predictions. NPJ Clim. Atmos. Sci. 2 
(1), 13. https://doi.org/10.1038/s41612-019-0071-y.

Szalai, S., Szinell, C., Zoboki, J., 2000. Drought Monitoring in Hungary. Early Warning 
Systems for Drought Preparedness and Drought ManagementWorld Meteorological 
Organization, 57, 182–199.

Tao, L.Z., He, X.G., Li, J.J., et al., 2023. A multilevel temporal convolutional network 
model with wavelet decomposition and Boruta selection for. J. Hydrometeorol. 24 
(11), 1991–2005. https://doi.org/10.1175/jhm-d-22-0177.1.

Vicente-Serrano, S.M., 2006. Spatial and temporal analysis of droughts in the Iberian 
Peninsula (1910-2000). Hydrol. Sci. J. 51 (1), 83–97. https://doi.org/10.1623/ 
hysj.51.1.83.

Westra, S., Sharma, A., 2010. An upper limit to seasonal rainfall predictability? J. Clim. 
23 (12), 3332–3351. https://doi.org/10.1175/2010jcli3212.1.

Xu, L., Zhang, C., Chen, N., et al., 2020. Potential precipitation predictability decreases 
under future warming. Geophys. Res. Lett. 47 (22), e2020GL090798. https://doi. 
org/10.1029/2020GL090798.

Zhou, Z., Kim, Y.-T., Im, E.-S., et al., 2024. Impact of anthropogenic warming on future 
unprecedented droughts in California: insights from multiple indices and multi- 
model projections. Earth’s Future 12 (1), e2023EF003856. https://doi.org/10.1029/ 
2023EF003856.

Z. Jiang and A. Sharma                                                                                                                                                                                                                       Journal of Hydrology X 27 (2025) 100203 

8 

https://doi.org/10.1029/2019WR026924
https://doi.org/10.1029/2019WR026924
https://doi.org/10.1002/2014wr016163
https://doi.org/10.1175/MWR-D-13-00248.1
https://doi.org/10.1016/j.jhydrol.2024.130668
https://doi.org/10.1038/s41612-019-0071-y
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0220
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0220
http://refhub.elsevier.com/S2589-9155(25)00004-5/h0220
https://doi.org/10.1175/jhm-d-22-0177.1
https://doi.org/10.1623/hysj.51.1.83
https://doi.org/10.1623/hysj.51.1.83
https://doi.org/10.1175/2010jcli3212.1
https://doi.org/10.1029/2020GL090798
https://doi.org/10.1029/2020GL090798
https://doi.org/10.1029/2023EF003856
https://doi.org/10.1029/2023EF003856

	Decadal drought prediction via spectral transformation of projected Sea Surface Temperatures
	1 Introduction
	2 Materials and methods
	2.1 Decadal projection skill for SSTA indices relevant to drought risk quantification
	2.2 Standardized Precipitation Index for drought forecasting
	2.3 Drought forecasting framework using spectrally transformed decadal SSTA projections

	3 Results and discussions
	3.1 Multi-model forecast skill of SPI12 using spectrally transformed SSTA projections
	3.2 Multi-scale SPI forecasts using spectrally transformed SSTA projections

	4 Conclusions
	CRediT authorship contribution statement
	Disclaimer
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


