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ABSTRACT 

Improving lead time for forecasting floods is important to minimize property damage and 

ensure the safety of the public and emergency services during flood events. Numerical 

weather prediction (NWP) models are important components of flood forecasting systems 

and have been vital in extending forecasting lead-time under complex weather and terrain 

conditions. However, NWP forecasts still have significant uncertainty associated with the 

precipitation fields that are the main inputs of the hydrologic models and thus the resulting 

flood forecasts. An issue often overlooked is the importance of correctly representing 

variability over a range of different temporal scales. To address this gap, here a new wavelet-

based method for post-processing NWP precipitation forecasts is proposed. First, 

precipitation forecasts are decomposed into the frequency domain using a wavelet transform, 

providing estimates of the amplitudes and phases of the time series at different frequencies. 

Quantile mapping is then used to correct bias in the amplitudes of each frequency. 

Randomized phases are used to generate an ensemble of realizations of the precipitation 

forecasts. The post-processed precipitation forecasts are reconstructed by taking the inverse 

of adjusted time-frequency decompositions with the corrected amplitudes and randomized 

phases. The proposed method was used to post-process NWP precipitation forecasts in the 

Sydney region, Australia. There is a significant improvement in post-processed precipitation 

forecasts across multiple time scales in terms of bias and temporal and spatial correlation 

structures. The post-processed precipitation fields can be used for the modeling of fully 

distributed hydrologic systems, improving runoff stimulation, flood depth estimation, and 

flood early warning. 

SIGNIFICANCE STATEMENT 

A new method accounting for the timing and spatial errors of NWP precipitation forecasts 

is proposed, and it can improve the skill of forecasts across multiple time scales, especially at 

short lead times. The proposed method provides a practical and effective way to correct these 

errors by incorporating spatio-temporal neighborhood information through the frequency 

domain using sophisticated wavelet transforms. With systematic timing and spatial errors 

removed, precipitation forecasts will be more skillful, and hydrological modeling using the 

post-processed forecasts can provide higher accuracy of streamflow estimation. 
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1. Introduction

Accurate and timely flood forecasts are vital for minimizing the impacts of these

potentially deadly and destructive events. It is the duty of operational flood forecasting 

centers to assist in the emergency preparation for these extreme flood events, both to mitigate 

the impacts on human life and the economy. Although major flood events cannot be avoided, 

early flood warnings can assist in providing adequate time for these emergency responses 

(He, Wetterhall, Cloke et al., 2009). Flood forecasts driven by observed gauge or radar 

rainfall data are sufficient for large catchments where the time of concentration is longer than 

the storm duration. However, a shift to the use of numerical weather prediction (NWP) to 

forecast precipitation has been vital in extending forecasting lead-time (de Roo, 

Gouweleeuw, Thielen et al., 2003). NWP models are important tools in the process of 

generating weather forecasts, including meteorological variables such as wind, pressure, air 

temperature, precipitation, etc. Although improved computing power and NWP model 

structure has led to considerable advances in the ability to forecast precipitation, the forecast 

skill of the NWP models to simulate precipitation is still low, especially for very short lead 

times and weather systems with small spatial scales (Shahrban, Walker, Wang et al., 2016; 

Shrestha, Robertson, Wang et al., 2013). The skill of weather forecasts is still affected by 

both systematic and random errors. These mainly originate from errors in specifying the 

initial conditions and boundary conditions, and as well as the structure of the NWP models 

(Vannitsem, Bremnes, Demaeyer et al., 2021). As a result, a range of methods has been 

developed to post-process precipitation forecasts from NWP models and the hydrological 

forecasts (e.g., streamflow) that are driven by NWP precipitation.  

The challenges of precipitation forecast postprocessing include but are not limited to 

(Jankov et al., 2021; Li et al., 2017; Scheuerer & Hamill, 2015): (i) the distributions of both 

forecast and observed precipitation are mixed discrete/continuous distributions; (ii) extreme 

events are difficult to capture; (iii) the forecast error is heteroscedastic; and (iv) systematic 

timing and spatial errors. Methods for postprocessing precipitation forecasts have been 

developed to address these challenges, including empirical methods, such as quantile 

mapping and analog method, and other statistical methods, such as conditional distribution-

based methods (e.g., Bayesian joint probability), regression-based methods, and ensemble 

dressing methods (Li, Duan, Miao et al., 2017). Quantile mapping (QM) is one of the most 

simple yet effective postprocessing methods that adjusts the cumulative distribution function 
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(CDF) of the forecasts according to the CDF of the observations (Cannon, Sobie, & 

Murdock, 2015), and it has been used extensively for post-processing precipitation forecasts 

(Gudmundsson, Bremnes, Haugen et al., 2012; Hamill, Engle, Myrick et al., 2017; Hamill & 

Scheuerer, 2018; Themeßl, Gobiet, & Heinrich, 2012) and can also be used for 

postprocessing probabilistic precipitation forecasts (Hamill & Scheuerer, 2018). There are 

also more complex methods, such as Ensemble Model Output Statistics (EMOS) producing a 

forecast probability distribution using ensemble spread information (Gneiting, Raftery, 

Westveld et al., 2005), Bayesian Model Averaging (BMA) providing probabilistic forecasts 

from an ensemble of forecasts (Raftery, Gneiting, Balabdaoui et al., 2005), and Bayesian 

Joint Probability (BJP) generating a probability model for the forecast (Robertson, Shrestha, 

& Wang, 2013). For a general review of the literature on statistical post-processing methods 

for hydro-meteorological forecasting, we recommend (Li, Duan, Miao et al., 2017) which 

provides a comprehensive review of progress in this area.  

Of the four challenges in postprocessing precipitation forecasts outlined above, QM can, 

to a considerable extent, address the first and second challenges by adjusting the distribution 

of the precipitation. However, it fails to address the two remaining challenges. Because 

forecast error is dependent on the magnitude of precipitation amount (i.e., heteroscedasticity 

in errors), the forecast error varies over different time scales, for example when aggregating 

fine resolution forecasts to longer time scales. There have been a number of studies to address 

this issue. For example, Wang, Zhao, Yang et al. (2019) proposed the Seasonally Coherent 

Calibration method accounting for the seasonality when post-processing or calibrating the 

daily precipitation forecasts of NWP. Other related methods to post-process the raw 

simulations from climate models correct bias across multiple time scales using the nested 

approach for univariate (Johnson & Sharma, 2012) and multivariate (Mehrotra & Sharma, 

2015), using frequency-based approaches such as Nguyen, Mehrotra, and Sharma (2016) and 

(Kusumastuti, Jiang, Mehrotra et al., 2021, 2022). It is noted that these methods generally 

consider the systematic errors in variables at a large time scale (e.g., monthly, annually, or 

interannually), and they are yet to be applied for NWP forecasts.  

Another key issue that needs more attention during statistical postprocessing is the 

treatment of systematic timing and spatial errors in raw precipitation forecasts (e.g., loss of 

temporal and spatial dependency between neighboring locations). Spatial EMOS (Feldmann, 

Scheuerer, & Thorarinsdottir, 2015; Scheuerer & Büermann, 2014) and spatial BMA 
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(Veronica, Adrian, & Tilmann, 2008), both aim to preserve the observed spatial dependency 

for precipitation forecasts. Another popular method for preserving the spatio-temporal 

dependence between neighboring locations is known as the Schaake Shuffle (Clark & Hay, 

2004). The method ranks the post-processed ensemble forecast values and randomly selects 

historical values at the locations of interest, and then reshuffles the ensemble output to match 

the rank of the historical forecast values at different lead times. The reshuffled ensembles 

were found to better match the correlation structure of the observations between rain stations, 

but it has difficulties capturing statistical dependencies between the locations when the 

forecast is initiated at short lead times (Verkade, Brown, Reggiani et al., 2013). The current 

study aims to extend these distributional and spatial based approaches into the frequency 

domain using wavelet transforms to remove the biases in spatio-temporal precipitation 

forecast across multiple times scales from hourly up to daily.  

Previous wavelet-based postprocessing methods have focused on post-processing 

hydrological variables and showed good performance for correcting error at different time 

scales, but the issue of spatial error is yet to be explored (Konrad Bogner, Liechti, & Zappa, 

2016; K. Bogner & Pappenberger, 2011; Buschow & Friederichs, 2021). These approaches 

only considered the amplitudes of wavelet decompositions, but ignored the phases component 

of wavelet decompositions. Addressing this gap could potentially improve the representation 

of spatial-temporal dependence for generating surrogate data (Brunner & Gilleland, 2020; 

Chavez & Cazelles, 2019; Lane, 2007; Scovell, 2020). For instance, Brunner and Gilleland 

(2020) included phases from continuous wavelet transform in their stochastic streamflow 

simulation, with good skill in preserving spatial dependency across different sites. Here, we 

develop an approach that decomposes the precipitation forecasts into the frequency domain 

using wavelet transforms (Torrence & Compo, 1998) where both the amplitudes and phases 

of the wavelet decomposition are used to correct the systematic errors in quantities, timing, 

and spatial structure of raw precipitation forecasts.  

This work develops and applies a wavelet-based quantile mapping post-processing 

method (WQM) using a case study of the greater Sydney region, in eastern Australia and an 

Australian developed NWP model. The main contributions of this study are to (i) develop a 

new approach that could remove the bias in spatio-temporal precipitation forecast at multiple 

time scales, (ii) demonstrate the method by post-processing short lead-time precipitation 
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forecasts, (iii) evaluate the performance of the approach from temporal, distributional and 

spatial perspectives.  

The paper is organized as follows. Section 2 introduces the study area and ACCESS 

NWP dataset used in this study, as well as the various metrics for evaluation. Section 3 

presents the methodology, including the basis of wavelet transforms, the process of amplitude 

correction in the frequency domain as well as the phase randomization and reshuffling for 

generating ensemble forecasts. Section 4 shows the characterization of bias in precipitation 

forecasts from the Australia NWP model, as well as the evaluation of the proposed method 

from three different perspectives. Conclusions are provided in Section 5. 

2. Study area and datasets

a. Study area

The new post-processing method was applied to precipitation stations over the Sydney

region, New South Wales, Australia that covers a wide range of hydrological characteristics. 

Fig. 1 shows the study area of the ACCESS NWP model covering the Sydney domain as well 

as locations of the precipitation stations within the state of New South Wales (NSW), 

Australia. Two stations (red triangle) in the two selected catchments (green and purple 

polygons) are used to demonstrate key elements of the method and results in Sections 3 and 

4. Station No. 210018 is in the Hunter River catchment while Station No. 41000269 is in the

Murrumbidgee River catchment. 

b. Rainfall station data

Observed precipitation station data were obtained from the Bureau of Meteorology

(BoM), Australia. The precipitation station data collected and maintained by BoM were under 

quality control. For the 173 rain gauges in NSW state, the shortest time interval of raw data 

was 15 minutes, and the longest period of record was available from November 1908 till 

now. There are 158 stations (locations are shown in Fig. 1) within the study domain of 

ACCESS NWP Sydney with a complete record from March 2018 to September 2021. The 

observed precipitation was aggregated to hourly time step for calibrating and evaluating the 

ACCESS NWP hourly precipitation forecasts.  
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Fig. 1. Study area of ACCESS NWP model covering domain around Sydney, Australia. 

Two highlighted catchments (green and purple polygons) and two stations (red triangle) in 

the two catchments are used for demonstration in this study. 

c. ACCESS Numerical Weather Predictions

In this study, we post-process hindcasts from the Australian Community Climate and

Earth-System Simulator (ACCESS) NWP model made available by the Bureau of 

Meteorology since August 2010 (Bureau of Meteorology, 2010). Several variants of 

ACCESS are run operationally, extending from a coarse resolution global model (ACCESS-

G) down to the high-resolution city-based models (ACCESS-C). Collectively, these ACCESS

variants form the Australian Parallel Suite (APS), including APS0, APS1, APS2, and APS3. 

The upgrade of the ACCESS suite of NWP models has resulted in increases in the skill of 

precipitation forecasts (Bureau of Meteorology, 2012). ACCESS-G of ACCESS NWP 

models extends over the global domain and is provided at a nominal 12 km grid spacing 

while ACCESS-C consists of convection-allowing kilometer-scale regional models covering 

capital cities and major population centers, and is provided at a nominal 1.5 km grid spacing. 

So far, the ACCESS-C models only have one single deterministic forecast publicly available. 

An ensemble prediction system for ACCESS-C (ACCESS-CE) is under development for 
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three domain over Australia (Roff, Bermous, Dietachmayer et al., 2022). Here precipitation 

forecasts from APS2 and APS3 of ACCESS NWP across the Sydney region covering the 

period from March 2018 to September 2021 were used to assess the proposed WQM method. 

The evaluation consists of three parts: (i) Evaluation of temporal characteristics, including 

correlation coefficient (r) and root mean square error (RMSE); (ii) Evaluation of 

distributional characteristics using probability density functions (PDF) skill scores (𝑆score); 

and (iii) Evaluation of the spatial correlation (correlation between rainfall sites against their 

distance). Note that the PDF skill score is a measure of how similar two PDFs are (Perkins, 

Pitman, Holbrook et al., 2007). It quantifies the overlap between the two PDFs by measuring 

the common area between them. The definitions of all evaluation metrics are shown in Table 

1. All evaluations were based on two-fold cross-validation. The first half of the study period

was used as the training set while the other half was used as the testing set, and then they 

were swapped.  

Table 1 Definition of evaluation metricsa

Metric Definition Range Optimal 

Root mean 

square error, 

RMSE 
RMSE = √

∑ (𝑥𝑖 − 𝑦𝑖)2𝑁
𝑖=1

𝑁
[0, ∞] 0 

Correlation 

coefficient, r 

𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1

[-1, 1] 1 

Probability 

density functions 

skill scores, 𝑺𝐬𝐜𝐨𝐫𝐞

𝑆score = ∑ 𝑚𝑖𝑛𝑚𝑢𝑚(𝑍𝑥, 𝑍𝑦)
𝑘

𝑖=1
 [0, 1] 1 

ax is simulated forecasts from NWP models and y is observations. N is the number of data 

pairs. k is the number of bins used to estimate the PDF, 𝑍𝑥 is the frequency of values in a 

given bin from the NWP simulations while 𝑍𝑦 is the frequency of values from the observed 

data. 

In addition to assessement using the metircs above, we adopted the Hering-Genton (HG) 

test (Gilleland, Hering, Fowler et al., 2018) to calculate the forecast skill, which can account 

for both temporal dependence and contemporaneous correlation. As the proposed new 

method creates an ensemble of forecasts from the single deterministc ACCESS-C forecast, 
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the metrics, including RMSE, r, and 𝑆score from the post-processed forecasts presented in the 

Section 4 are derived from the ensemble mean of the forecasts consisting of all realizations. 

Rank histograms (Hamill, 2001), generated by repeatedly tallying the rank of the 

observations relative to values from an ensemble sorted from lowest to highest, are used to 

measures how well does the ensemble spread of the forecast represent the true variability 

(uncertainty) of the observations. The results of rank histograms are given in Fig. S4 of the 

Supplemental Material.  

3. Methodology

The proposed method for postprocessing NWP precipitation forecasts consists of three

main steps. First, precipitation forecasts were decomposed into the frequency domain using 

the continuous wavelet transform, resulting in estimates of the amplitudes and phases of the 

time series across the frequency spectrum. Quantile mapping was then used to correct bias in 

the amplitudes of each frequency. Random time series were used to generate phases 

(hereinafter referred to as randomized phases) for reconstructing the post-processed forecasts. 

In the third step, post-processed precipitation forecasts were reconstructed by taking the 

inverse wavelet transform of the corrected amplitudes and randomized phases to create an 

ensemble of precipitation forecasts. We provide a detailed breakdown of the procedures for 

each step, with a summary of the overall procedures presented at the end. To aid in 

understanding, a general flowchart illustrating the methodology is provided in Fig. 2. 
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Fig. 2. Flowchart of the methodology which includes five main steps: (1) Decompostion 

of observed, raw forecasts as well as random times series using continuous wavelet transform 

(CWT); (2) Corrections of amplitudes from raw forecasts using quantile mapping (QM); (3) 

Randomization and reshuffling of phases from random time series; (4) Repeation of step (3) 

to generate multiple realizations of randomized phased; and (5) Inverse wavelet transform to 

obtain reconstructed ensemble forecasts.  

a. Decomposition in the frequency domain using continuous wavelet transform

Wavelet transforms can be used to analyze time series or signals that contain information

at many different frequencies (Daubechies, 1992; Torrence & Compo, 1998). The continuous 

wavelet transform decomposes the original time series into a set of coefficients, consisting of 

amplitudes and phases, across the time-frequency domain. The wavelet function used for the 

transform (e.g., orthogonal or nonorthogonal wavelets) should fit for the purpose, such as 

denoising or image processing (Sang, 2013; Torrence & Compo, 1998). A generalized 

wavelet function (or a daughter wavelet at scale s with shift n), 𝜓(𝜂), that depends on a 

nondimensional “time” parameter 𝜂, is shown as follows (Torrence & Compo, 1998):  

𝜓(𝜂) = 𝜓[
(𝒏′−𝒏)𝜹𝒕

𝒔
] = (

1

𝑠
)

1/2

𝜓0[
(𝒏′−𝒏)𝜹𝒕

𝒔
] (1)
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where 𝜓0(𝜂) is normalized 𝜓(𝜂) to have unit energy. n is the localized time index and 𝑠

is the wavelet scale (proportional to the wavelength of the frequency associated with a 

Fourier transformation). Due to its smooth features and wide applications in hydro-

climatological applications (Brunner & Gilleland, 2020; Fossa, Dieppois, Massei et al., 2021; 

Hu & Si, 2021; Schaefli, Maraun, & Holschneider, 2007), the Morlet wavelet was adopted in 

this study because it provides a balanced trade-off between the detection of scales and 

localization of the oscillations in time (Torrence & Compo, 1998). The continuous wavelet 

transform of a discrete-time series, 𝒙𝒏, is defined as the convolution of  𝒙𝒏 with a scaled and 

translated version of 𝜓0(𝜂):

𝑾𝒏(𝒔) = ∑ 𝒙𝒏′𝜓
∗[

(𝑛′ − 𝑛)𝛿𝑡

𝑠

𝑁−1

𝑛′=0

] (2) 

where star (∗) denotes complex conjugate functions of 𝜓(𝜂). Since the wavelet function 

𝜓(𝜂) is in general complex, the wavelet decompositions 𝑊𝑛(𝑠) is also complex, including the

real part, ℜ{𝑾𝒏(𝑠𝑗)}, and imaginary part, ℑ{𝑾𝒏(𝑠𝑗)}. The complex values can be transferred 

to the polar coordinate system, consisting of amplitudes and phases across the spectrum 

(Torrence and Compo 1998). So, in a polar coordinate system, the complex values of wavelet 

decompositions can be divided into amplitudes (𝑨 = |𝑾𝒏(𝒔)|), and phases (𝛟 =

tan−1[ℑ{𝑾𝒏(𝒔)} ℜ{𝑾𝒏(𝒔)}⁄ ]). The wavelet decompositions measure the similarity of x(t) to

the wavelet 𝜓 at the current scale 𝑠 (Percival & Walden, 2000). 

Finally, with the basis wavelet function and wavelet decompositions, the original time 

series can be reconstructed by the summation of the real part of the wavelet decompositions 

across all scales using a simple delta (𝛿) function (Farge, 1992). This inverse transform yields 

(Torrence & Compo, 1998): 

𝒙𝒏 =  
𝛿𝑗𝛿𝑡1/2

𝐶𝛿𝜓0(0)
∑

ℜ{𝑾𝒏(𝒔𝒋)}

𝑠𝑗
1 2⁄

𝐽

𝑗=0

(3) 

where 𝐶𝛿 is a constant that depends on the specific wavelet 𝜓(𝜂) used, and J is the largest 

scale investigated. The choice of scales 𝑠𝑗 and J can be written as a fractional power of two:  

𝑠𝑗 = 𝑠02𝑗𝛿𝑗 ,      𝑗 = 0,1, ⋯ , 𝐽 (4)
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𝐽 = 𝛿𝑗−1 log2 (
𝑁𝛿𝑡

𝑠0
) (5) 

where 𝑠0 is the smallest resolvable scale, and J determines the largest number of scales. 

𝛿𝑡 is the time step of the time series while 𝛿𝑗 depends on the width of the wavelet function 

used and smaller values give finer frequency resolution. In our study, we have carefully 

selected the value of 𝛿𝑗 to ensure that the smallest possible number of wavelet scales, J, is 

used while still characterizing the time series spectrum given a length of the dataset. Readers 

are referred to Torrence and Compo (1998) for additional details on the background of the 

continuous wavelet transform. In addition, the same number of scales, J, should be used when 

we decompose the training and target precipitation forecasts. However, in real applications if 

the target precipitation forecasts are for a short lead time only, then to ensure that there are 

sufficient data points for a decomposition with J scales to be valid, the target or future 

forecasts should be concatenated with the training forecasts prior to the wavelet 

decomposition.  

To demonstrate the wavelet transform, we applied the method to a time series of observed 

precipitation at a selected station (Station No. 210018 in Hunter River catchment shown in 

Fig. 1). The variability of precipitation differs in the localized time-frequency domain (Fig. 3) 

with differences in the amplitudes and phases at different time scales. A small number of 

wavelet scales were used here (a total number of 9 wavelet scales with 𝐽 = 8 𝑎𝑛𝑑 𝛿𝑗 =

0.125). It is clear that the variances at the small wavelet scales are much larger than the 

longer wavelet scales. Precipitation is a temporally dynamic meteorological variable (i.e., 

high-frequency signal), and thus the amplitudes at short time scales have large variability. 

Similarly, the phases vary quickly between −𝜋 and 𝜋 at small time scales and this determines 

the timing of the precipitation occurrence in the wavelet reconstruction. Due to the fact that 

the majority of precipitation information is at smaller wavelet scales, the influence of 

boundary effects on the precipitation decomposition at smaller time scales is limited 

(Torrence & Compo, 1998). However, when rainfall events occur at the edge of the time 

series, it is recommended to pad the beginning and end of the time series with sufficient zeros 

and then remove them afterward.  
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Fig. 3. Decomposition of an observed precipitation time series using continuous wavelet 

transform at selected wavelet scales. The original precipitation time series is given in panel 

(a) while its amplitudes and phases in the time-frequency domain are given in panel (b) and

(c), respectively. 

b. Amplitude correction using quantile mapping

As shown in Fig. 4(a), the decomposed amplitudes of observations (black lines) and raw

forecasts across the spectrum from small scales (high-frequency information) to large scales 

(low-frequency information) are presented. According to the equations of scales in Equation 

(4), the equivalent periods of the investigated scales (𝑠0, 𝑠10,…, and 𝑠60) are 2h, 4.8h, 11.3h, 

26.9h, 64h, 152.2h, and 362h. The amplitudes are calibrated using the QM, which is given in 

the following formula (Cannon, Sobie, & Murdock, 2015):  

�̂�𝒋 = 𝐹𝑦
−1[𝐹𝑥(𝑨𝒋)] (6)
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where 𝐹𝑥 is the CDF of raw model simulation, and 𝐹𝑦
−1 is the inverse of the observation

CDF.  

With the QM applied to adjust the CDF of the amplitudes from raw forecasts at each 

frequency, their corresponding CDFs are shown in Fig. 4(b). As mentioned previously, 

precipitation is a highly random process, so the majority of variability is at short time scales 

(from hourly to daily), representing high-frequency information. With the corrected 

amplitudes, the next step is to generate its associated phases so that we can generate multiple 

realizations of precipitation forecasts and form the ensemble forecasts.  
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Fig. 4. Bias correction of amplitudes of wavelet decompositions across the frequency 

spectrum using quantile mapping: (a) Amplitudes of observations, raw and corrected 

forecasts; (b) CDF of amplitudes derived from observations, raw and corrected forecasts. 

c. Phase randomization and reshuffling

First, a random time series (Gaussian white noise with zero mean and unit standard

deviation) of the same length as the input series was generated, and its phases were derived 

from the random time series using wavelet transform with a complex wavelet function, 

similar to the approach proposed by Chavez and Cazelles (2019) and the randomized phases 

are then reshuffled. Note that the reshuffling process is not part of the approach given in 
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Chavez and Cazelles (2019). A demonstration of the shuffling process is presented in Table 2 

using ten randomly generated phases as an example. At time step 1, the rank of raw forecast 

is 4. This corresponds to a new value of -0.883 from the random time series, and in the 

randomized phase series, this new value will be shifted to time step 1. The same procedure 

will be applied to phases at other time steps until the new values from the random time series 

have the same rank. This is to ensure the pairwise relationship between amplitudes and 

phases from raw forecasts.  

Table 2 Demonstration of the reshuffling process of phases 

Time step 
Phases from  

raw forecasts 
Rank 

Phases 

from 

random 

time 

series 

Rank Randomized phases Rank 

1 -1.208 4 0.785 6 -0.883 4 

2 -1.523 3 2.401 10 -0.895 3 

3 0.329 9 -1.380 2 1.650 9 

4 -2.787 1 -0.638 5 -1.856 1 

5 -0.198 6 1.650 9 0.785 6 

6 -0.102 7 1.062 7 1.062 7 

7 1.963 10 -1.856 1 2.401 10 

8 -0.815 5 -0.895 3 -0.638 5 

9 0.293 8 -0.883 4 1.196 8 

10 -2.072 2 1.196 8 -1.380 2 

It is clear that after reordering, the phases from the random time series which correspond 

with the phases of raw forecasts the randomized phases follow the pattern of raw forecasts. 

This example demonstrates the process at one frequency level; in the WQM method, this 

operation was carried out for each frequency level separately, and randomized phases 

(derived from the same random time series) at each decomposition level were reshuffled 

according to the rank of the raw forecasts. In addition to this, a block-wise shuffling is 

included to allow shifting forward or backward slightly of the forecasts, with separate shifts 

for each bias correction location. This is an optional step, with an additional parameter of the 

block size to be optimised, that ensures the proposed method can deal with a range of 

potential biases in NWP models in terms of timing and spatial structure errors. A simple 

illustration for the block wise shuffling is given in Table S2 of the Supplemental Material.  In 

terms of the real example here (subset shown in Fig. 5 to highlight the differences resulting 

from the process), with the randomized phases from the random time series (red lines), we 

rank the phases according to the phases of raw forecasts at the corresponding time scale. 
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After the reshuffling process, there is a greater similarity between the randomized phases 

(blue lines) and the phases from raw forecasts (black lines). Last but not least, phases from 

the same random time series are used for all the rainfall stations considered to retain spatial 

dependencies among those sites. To see the impact of phase randomization and reshuffling on 

the proposed method, please refer to Fig. S2 in the Supplemental Material. 

Fig. 5. Illustration of phase randomization and reshuffling using 100 data points at Station 

210018. The phases from white noise (red line) change to randomized phases (blue line) 

according to the rank of phases from raw forecasts (black line). The full time series at Station 

210018 can be found in Fig. S3 of the Supplemental Material.  

d. Wavelet-based QM formulation

Processed precipitation forecasts  �̂�𝒏 can be obtained by reconstructing the time series

using corrected amplitudes (�̂�𝒋) and randomized and shuffled phases (�̂�𝒋). To summarize, the 
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wavelet-based QM procedure for post-processing NWP precipitation forecasts consists of 

five main steps: 

1) Decompose the raw model simulation (𝒙𝒏) and observation (𝒚𝒏) into the frequency

domain using continuous wavelet transform, extracting its amplitudes (𝑨𝒋) and phases ( 𝝓 𝒋) 

across different time scales.  

2) Adjust the CDF of amplitudes at each frequency from forecasts according to the CDF

of amplitudes at the corresponding scales from the observations. Applying Equation (6), the 

calibrated amplitudes from forecasts  �̂�𝒋 is given by  �̂�𝒋 = 𝐹𝑦
−1[𝐹𝑥(𝑨𝒋)].

3) (i) Derive wavelet decompositions of the generated Gaussian white noise,  𝜺𝒏, to

extract the phases,  𝝓 𝒋, and reorder these phases to get the adjusted phases as follows: 

�̂�𝒋 = 𝑅𝑥
−1[𝑅 ( 𝝓 𝒋)] (7) 

where 𝑅  is the rank of the random time series, and 𝑅𝑥
−1 is the inverse of the rank of raw

precipitation forecasts (referring to Table 2 for a simple illustration). Furthermore, a block-

wise shuffling is included to allow shifting in the timing of the events.   

(ii) Combine the corrected amplitudes ( �̂�𝒋) and randomized and shuffled phases ( �̂�𝒋)

to obtain adjusted time-frequency decompositions �̂�𝒏(𝒔), and then post-processed  �̂�𝒏 is

obtained by using the inverse wavelet transform in Equation (3). It should be noted that 

negative values may appear after the inverse wavelet transform is applied and we use a 

threshold (in this study 0.1mm precipitation as used by Shahrban, Walker, Wang et al. (2016) 

for Australia precipitation forecasts), below which any values are set to zero.  

4) Repeat step 3 using a newly generated Gaussian white noise to generate another

ensemble member of post-processed precipitation forecasts. If the procedure is repeated 

𝑛𝑟 times, there will be 𝑛𝑟 realizations of forecasts for each station.  

5) Form an ensemble forecast including one set of post-processed forecasts with corrected

amplitudes only (without phase randomization) and additional 𝑛𝑟 realizations of post-

processed forecasts from phase randomizations.  

The above process was used to create an ensemble of post-processed precipitation 

forecasts for one location from the single deterministic raw forecast. To extend it to other 

Accepted for  publication in Monthly Weather Review. DOI 10.1175/MWR-D-22-0217.1.Brought to you by University of New South Wales Library | Unauthenticated | Downloaded 04/17/23 11:56 PM UTC



19 

File generated with AMS Word template 2.0 

locations and preserve the spatial dependence, the above process is repeated using the same 

set of random time series generated for the first station. 

e. Demonstration of Wavelet-based QM at two sample stations

Fig. 6 compares the performance of the proposed method (WQM and five realizations

derived from randomized phases, r1, r2, …, and r5) to the raw and post-processed 

precipitation forecasts using QM at two selected rainfall stations in northern and south of 

NSW, Australia (seen in Fig. 1). Note that WQM presents the post-processed precipitation 

with corrected amplitudes only (i.e., without phase randomization), and this ensemble 

member is presented in Fig. 2 as the first processed forecast. The largest number of wavelet 

scales (J) used for results presented hereafter was 8. However, additional assessments of 

post-processed forecasts with 𝐽 = 17 are provided in Supplemental Material from Fig. S5-

S11.  

As shown in the figure, QM-based approaches are able to adjust the distribution of raw 

simulation matching it with the observations (indicated by the PDF skill score in Fig. 6(a)), 

and it also corrects the extreme values simultaneously leading to the improved bias (the 

difference between forecasts and observations) and RMSE. However, the standard QM 

approach performs poorly in correlation coefficients while the proposed approach improves 

them substantially. The skill of the postprocessed rainfall forecasts using wavelet-based QM 

approach is significantly better than the conventional QM method (HG test p-values << 0.05) 

at both Station 210018 and 41000269. Full test statistics and associated p-values from 

different ensemble members are given in Table S1 of the Supplemental Material. It is noted 

that the correlation between forecasts and observations is low at the hourly time step while it 

increases when aggregating to a longer time step. More details regarding the characteristics of 

bias in ACCESS NWP can be found in Section 4.a. 
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Fig. 6. Performance of post-processed precipitation forecasts using the proposed 

approach, including WQM and five realizations derived from phase randomization and 

reshuffling, r1, r2, …, and r5. WQM stands for the post-processed precipitation with 

corrected amplitudes and raw phases from the raw forecasts. Comparison is made against raw 

forecasts as well as adjusted precipitation forecasts using QM at two selected stations: (a) 

Station No. 210018 in the Hunter River catchment; (b) Station No. 41000269 in the 

Murrumbidgee River catchment.  

The number of wavelet scales depends on the 𝛿𝑗, and it should be chosen carefully in 

practical applications. A smaller number of wavelet scales is preferred in post-processing 

precipitation forecasts, since a larger number of wavelet scales providing finer frequency 

resolution would lead to overfitting and poor performance. In addition, a large number of 

wavelet scales in wavelet transforms requires greater computational cost (power, time, etc) 

when decomposing precipitation at a finer frequency resolution. In Fig. S1 of the 

Supplemental Material, results of a sensitivity analysis on the impact of the number of 

wavelet scales are presented.  

Accepted for  publication in Monthly Weather Review. DOI 10.1175/MWR-D-22-0217.1.Brought to you by University of New South Wales Library | Unauthenticated | Downloaded 04/17/23 11:56 PM UTC



21 

File generated with AMS Word template 2.0 

4. Results and discussions

a. Characterization of bias in precipitation forecasts from ACCESS NWP

Fig. 7 shows the NWP precipitation bias at various lead times, and raw hourly forecasts

have larger errors at lead 1 hour. When aggregated over longer durations, RMSE increases as 

expected, with lead 1 hour forecasts still having the largest RMSE across lead times. 

Correlation between observed and predicted precipitation decreases when lead time increases, 

and this pattern remains unchanged when aggregating to larger durations. Correlation is 

substantially improved over longer aggregations (Cuo, Pagano, & Wang, 2011; Shrestha, 

Robertson, Wang et al., 2013). According to error decomposition and the relationship 

between RMSE and correlation (Gupta, Kling, Yilmaz et al., 2009), the larger RMSE of 

forecasts at short lead times is likely due to the difference in standard deviation and mean 

between observed and predicted forecasts, 

RMSE2 = 2𝜎𝑥𝜎𝑦(1 − 𝑟) + (𝜎𝑥 − 𝜎𝑦)
2

+ (𝜇𝑥 − 𝜇𝑦)2
(8) 

where 𝜎𝑥 and 𝜎𝑦 represent the standard deviation of forecasts and observations, respectively, 

and 𝜇𝑥 and 𝜇𝑦 are the mean of forecasts and observations. 𝑟 is the correlation coefficient 

between the forecasts and observations (seen in Table 1). As a result, the characterization of 

bias in ACCESS NWP forecasts suggests that there is a need to post-process precipitation 

forecasts to match their mean and standard deviation across multiple time scales, especially at 

short lead times. Previous studies on ACCESS NWP post-processing also found that the 

RMSE of precipitation forecast varies at different lead times with the lowest RMSE for lead 

times of 13-24h, and there were larger errors due to spin-up problems in the shorter lead 

times (Shahrban et al., 2016). This was observed in other NWP systems (Huang & Luo, 

2017). In the following sections, precipitation forecasts at lead 1 hour were used to evaluate 

the performance of the proposed method in correcting biases across multiple time scales.  
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Fig. 7. Characterization of errors in raw precipitation forecasts from ACCESS NWP 

across all stations over the Sydney domain: (a) RMSE; (b) r. 

b. Evaluation of the proposed method from a temporal perspective

Fig. 8 shows the bias, presented as the difference between the forecasts and observations,

of both raw and post-processed forecasts. The raw forecasts consistently overestimate 

precipitation at all locations, with slightly larger biases in the austral summer (Fig. 8b). After 

post-processing, the biases are substantially reduced in both seasons and for all time 

aggregations. However there is a tendency for a slight underestimation following bias 

correction (bias values tend to be slightly less than zero), and the underestimation of extreme 

rainfall in post-processed forecasts is likely the cause. Fig. 9 compares the raw and post-

processed forecasts using RMSE. In both periods, forecasts at the majority of the rain gauge 

sites are improved following post-processing. When aggregating to a longer duration, the 

RMSE of the raw precipitation forecasts is larger, and the improvement following post-

processing is thus also larger.  

The temporal correlations of the raw and post-processed forecasts are compared in Fig. 

10. Correlations for the hourly precipitation are improved at almost all stations after post-

processing using the proposed WQM approach (p-value << 0.05, paired t-test). At longer 
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time aggregations, however, only a small percentage of stations show improvement in the 

corrected forecasts with most stations having lower correlations at daily aggregation (Fig. 

10(a)). The ensemble mean of post-processed forecasts (including the forecasts from phase 

randomization and reshuffling) do not correctly capture drizzle and tend to have a higher 

percentage of zero values compared to the raw forecasts. On average, the post-processed 

forecasts had around ten percent more zero values not matching with observations than the 

raw forecasts for 12 and 24-hour aggregation times.  

Fig. 8. Bias of post-processed forecasts at different time scales across all stations (a) 

March-August; (b) September-February. 
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Fig. 9. RMSE of post-processed forecasts at different time scales across all stations (a) 

March-August; (b) September-February. 
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Fig. 10. Temporal correlation of post-processed forecasts at different time scales across 

all stations (a) March-August; (b) September-February. 

c. Evaluation of the proposed method from a distributional perspective

Following post-processing, most sites have improved PDF skill scores across the range of

time aggregations (Fig. 11). The improvement is the most evident for the hourly time scale 

since the raw forecasts had a very low PDF skill score. Our method for correcting 

distributional characteristics of precipitation has been found to be highly effective. 

Specifically, 83% of the stations had significant improvements (paired t-test at the 5% level) 

for hourly precipitation, 58% for aggregated 6-hour precipitation, 78% for 12-hour 

precipitation, and 91% for 24-hour precipitation.  

Since quantile correction has been applied at different time scales, the WQM approach 

leads to improved representation of the precipitation distributions and lower bias. Note that 

the results presented so far in Section 4 are derived from the mean of the ensemble forecast 

consisting of 20 realizations. Results would differ when a different number of ensemble 

members was adopted, but the improvements from the WQM approach are consistent across 

the temporal and distributional metrics investigated. 
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Fig. 11. PDF skill score of post-processed forecasts at different time scales across all 

stations (a) March-August; (b) September-February.  

d. Evaluation of the proposed method from a spatial perspective

The gauges cover a large area and given the often, small spatial structure of storms

leading to short-duration precipitation events, the correlations between those stations over the 

entire domain varies substantially.  

Spatial correlations between all station pairs plotted against distance are shown in Fig. 12. 

For clarity, only the fitted power models from different forecasts are shown. Correlation with 

distance increases when precipitation is aggregated to longer time scales. The spatial 

structure of the raw forecasts (red line) has the largest bias for the longest time scales. WQM 

post-processed precipitation forecasts improve the representation of spatial structures of 

precipitation, with the biggest improvements at the longest time scales where the raw errors 

are largest.  
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Fig. 12. Spatial correlation of post-processed NWP precipitation forecasts against their 

distance between all stations over the entire study domain, and subplots represent the 

performance of post-processed forecasts from different time scales.  

We focus our attention on two river catchments, where correctly representing spatial 

correlation is vital for accurate flood forecasting. Fig. 13 shows the spatial correlations of 

post-processed precipitation forecasts between stations within the Hunter and Murrumbidgee 

River catchments. The observed correlation between stations against distance is lower than 

the raw simulation from ACCESS NWP, reflecting model structural errors (Jankov, Gregory, 

Ravela et al., 2021). The WQM approach corrects those biases and better matches the 

dependence across all the stations. Using the ensemble of 20 realizations (in grey color), the 

observed spatial correlation structure is within the band of these randomized precipitation 

forecasts. The post-processed forecasts still have more structure (higher correlation with 

distance) than the observations and this is likely due to the same randomization phases (from 

a random Gaussian white noise) being used to generate the different realizations (Brunner & 

Gilleland, 2020; Chavez & Cazelles, 2019). 
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Fig. 13. Spatial correlations of post-process NWP precipitation forecasts between stations 

(solid points) and their fitted power model (solid lines) within two catchments: (a) Hunter 

River catchment; (b) Murrumbidgee River catchment. 

5. Implications for post-processing NWP

The treatment of systematic timing and spatial errors in raw precipitation forecasts is

challenging and new methods are needed that can simultaneously address improve temporal, 

spatial, or intervariable dependence. In addition, precipitation forecast postprocessing often 

does not account for the bias across multiple time scales, especially at short lead times. 

Postprocessing methods that can address the multi-scale issue while preserving spatio-

temporal or intervariable dependency are needed. The proposed method makes use of the 

wavelet transform with a complex wavelet function, which can provide additional 

information on phases representing the timing of the precipitation occurrence. It overcomes 

the issue of representativeness of reordering in Schaake shuffle by using the randomized 

phases from Gaussian white noise. Meanwhile, using the same set of randomized phases used 

across all stations investigated preserves the spatial-temporal dependency.  

As such, instead of building statistical relationships between observations and raw 

forecasts for a particular location and a specific forecast time, the proposed method accounts 

for the timing and spatial errors, and it can capture the true variability (distributional 
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similarity) of the observations across multiple time scales. The WQM method provides a 

practical and effective way to correct these errors by incorporating spatio-temporal 

neighborhood information through the frequency domain. With timing and spatial errors 

removed, precipitation forecasts will be more skillful, and hydrological modeling using the 

post-processed forecasts can provide higher accuracy of streamflow estimation.  

6. Conclusions

This paper has presented a new method for postprocessing NWP precipitation forecasts.

The novelty of the approach is to transfer a traditional quantile mapping method into the 

frequency domain. This method makes use of the power of wavelet transform using the 

complex wavelet functions, which give us the opportunities to adjust both amplitudes and 

phases of precipitation forecasts. We assessed the new approach using forecasts from an 

NWP model covering the Sydney region. The advantage of the approach over the QM 

approach is demonstrated using two demonstration stations in detail, and the performance of 

the post-processed forecasts has been assessed from temporal, distributional as well as spatial 

perspectives. The results have shown clear improvements in a range of metrics, including 

RMSE, temporal and spatial correlation, and PDF skill scores. More importantly, the 

proposed method has shown great potential in correcting bias in short-lead time forecasts 

across multiple time scales. This is particularly important for early flood warnings assisting in 

providing adequate time for emergency responses. The preservation of the spatio-temporal 

dependency from post-processed precipitation forecasts can further improve the accuracy of 

flood forecasts for spatially-distributed hydrologic systems. 
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