

Drought prediction for improved water resource management: A wavelet-based system prediction approach

Ze Jiang¹, Ashish Sharma¹ and Fiona Johnson¹

STAHY 2019

¹ Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney

Why cannot use wavelets for prediction?

Wavelets need the information from "future" – does it make sense to use the future characterise the past?

But we "know" the future using GCM (Global Climate Model) simulations – the aim is to characterize it well!

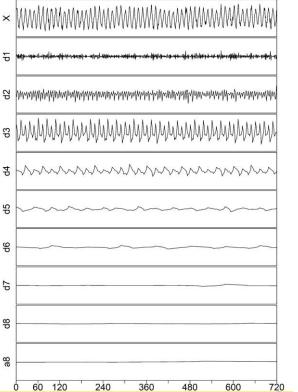
Key Research Questions

- How to characterise drought using GCM simulated data?
- How to extract useful information?
- How to use GCM future projections?

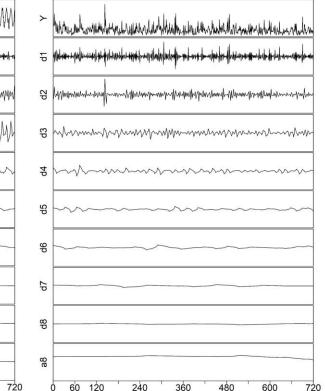
The hypothesis:

If the spectral variance structure of the predictor is similar to that of the response, the predictive model using that predictor will exhibit better accuracy than otherwise.

Background: Wavelet Transform


Additive Decomposition: (Multiresolution Analysis, MRA)

$$X = \sum_{j=1}^{J} d_j + a_J$$
$$\sigma_X^2 = \sum_{j=1}^{J} \sigma_{d_j}^2 + \sigma_{a_J}^2$$


water@

water research centre

Predictor Variable X (EPT)

Target Response Y (Rainfall)

MRA:

$$X = \sum_{j=1}^{J} d_j + a_J$$
$$\sigma_X^2 = \sum_{j=1}^{J} \sigma_{d_j}^2 + \sigma_{a_J}^2$$

Matrix form:

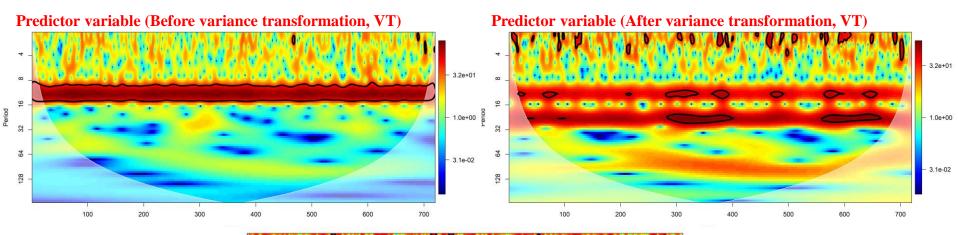
 $X = \tilde{R}I$

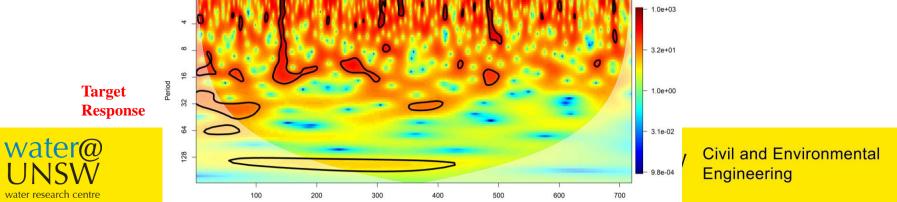
where $\tilde{\mathbf{R}}$ is normalized reconstructions matrix.

$$\boldsymbol{R} = [\boldsymbol{d}_1, \dots, \boldsymbol{d}_J, \boldsymbol{a}_J] \qquad \boldsymbol{I} = [\boldsymbol{\sigma}_{d_1}, \dots, \boldsymbol{\sigma}_{d_J}, \boldsymbol{\sigma}_{d_J}]^{\mathrm{T}}$$

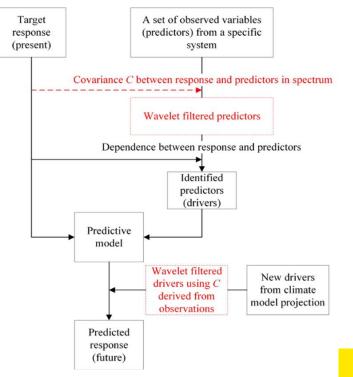
What we are looking for:

$$X' = \tilde{R}\alpha$$
$$\alpha = \sigma_X \tilde{C}$$


where \tilde{C} is the normalized covariance matrix for the variable set (Y, \tilde{R})


$$\boldsymbol{C} = \frac{1}{n-1} \boldsymbol{Y}^T \tilde{\boldsymbol{R}} = \left[\boldsymbol{S}_{\boldsymbol{Y}\tilde{d}_1}, \dots, \boldsymbol{S}_{\boldsymbol{Y}\tilde{d}_J}, \boldsymbol{S}_{\boldsymbol{Y}\tilde{a}_J} \right]$$

$$RMSE_{\min} = \sqrt{\frac{n-1}{n}(\sigma_Y^2 - \left\|\boldsymbol{C}\right\|^2)}$$



How to use GCM future projections?

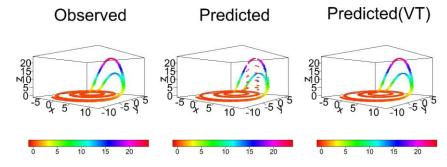
The proposed wavelet-based system prediction framework

WINDVV water research centre Step 1 - identify best possible drivers from large numbers of climatic variables (inputs)

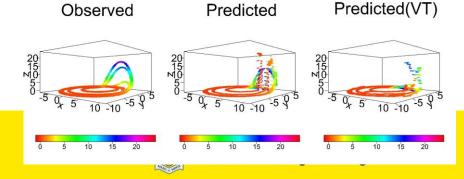
Step 2 - form a predictive model based on the identified drivers, estimate the model parameters that best fit to the data

Step 3 - predict the system response for new inputs.

Wavelets: obtain filtered new climate variables


Results – Synthetic example

A dynamic example (Rössler system):


$$\dot{x} = -y - z,$$

$$\dot{y} = x + ay,$$

$$\dot{z} = b + z(x - c).$$

Use x and y to predict z

Calibration: RMSE = 0.113 against 1.189



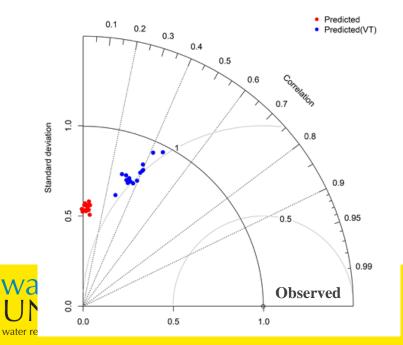
Validation: RMSE = 2.550 against 4.493

Results – Real example

- Sydney Region Rainfall Stations
- NCEP-NCAR Reanalysis grid

Target response: Drought Index (SPI12)

Predictor No.	Predictor Name
1	Geopotential heights (m) at 925 hPa (GPH@925)
2	Temperature depression (degree C) at 700 hPa (TDP@700)
3	Temperature depression (degree C) at 500 hPa (TDP@500)
4	Equivalent potential temperature (Kelvin K) at 500 hPa (EPT@500)
5	Zonal Wind (m/s) at 500 hPa (UWND@500)
6	Meridional Wind (m/s) at 500 hPa (VWND@500)
7	N-S gradient of mean sea level pressure (NS-MSLP)



Results – Real example

Taylor diagram of evaluating model performance by the standard deviation, centered RMSE and correlation coefficient.

Cross-Validation

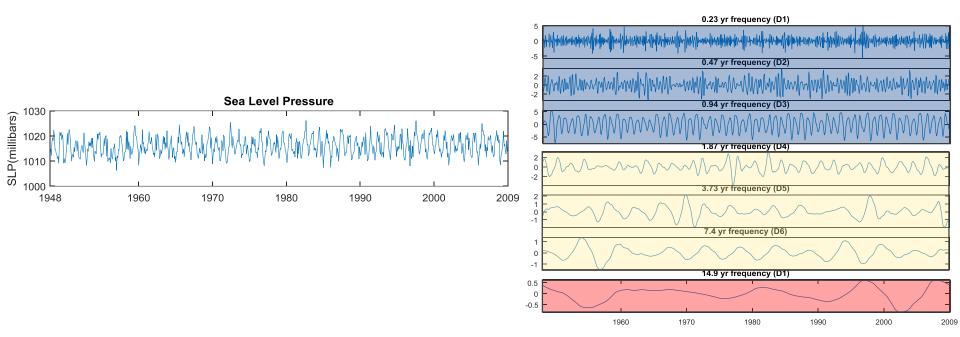
Station No.	Predicted	Predicted (VT)	Reduced RMSE
1	1.12	1.02	0.10
2	1.09	1.01	0.08
3	1.12	1.00	0.12
4	1.14	1.01	0.13
5	1.12	1.01	0.11
6	1.11	1.06	0.05
7	1.13	1.01	0.12
8	1.14	1.04	0.10
9	1.12	1.05	0.06
10	1.12	1.03	0.09
11	1.13	1.04	0.09
12	1.12	1.02	0.10
13	1.14	1.08	0.06
14	1.13	1.02	0.11
15	1.11	1.04	0.07

Conclusions

- A unique variance transformation is identified for each predictor variable that explains maximal information in the corresponding response.
- Results of a dynamic example and a real application show clear improvements in predictability compared to the use of unfiltered predictors.
- It is a generic method and not limited to the hydro-climatology system.

The open-source R-package WASP is available for download from the following website "http://hydrology.unsw.edu.au/download/software/ WASP". Source codes are available, along with help-files and example real datasets used to generate the outcomes reported.

() www.hydro	ology.unsw.edu.au/download/software	
Scopus 📐 No	CAR_EOL_data 🔀 Innovations Global I	
	Engineering	This website UNSW Websites
	Hydrology@UNSW	
	A People News & Events Data and Code	
	Home > Data and Code > Software	
	Software	
	Please see list of software available from the menu on the left side of your screen.	In this section:
	We ask that you acknowledge the relevant publications listed for each section if you u the data or software in your research. If you have questions about the code or data	ISE > Software
	please contact the corresponding author of the relevant publication(s).	Dynamic Linear Combination - 2016
		KNN and NPRED - 2016
		SMART - 2016
		Multisite Rainfall Simulator - 2015
		Sequential Monte Carlo - 2014


wate

water researc

Thank you!

