## Forecasting drought revisited – the importance of spectral transformations to dominant atmospheric predictor variables

Ze Jiang<sup>1</sup>, Fiona Johnson<sup>1</sup> and Ashish Sharma<sup>1</sup>

Water Research Centre, Civil and Environmental Engineering UNSW, Sydney, AUSTRALIA http://www.civeng.unsw.edu.au/staff/ashish.sharma

#### Water Resources Research

Technical Reports: Methods

Refining Predictor Spectral Representation Using Wavelet Theory for Improved Natural System Modeling

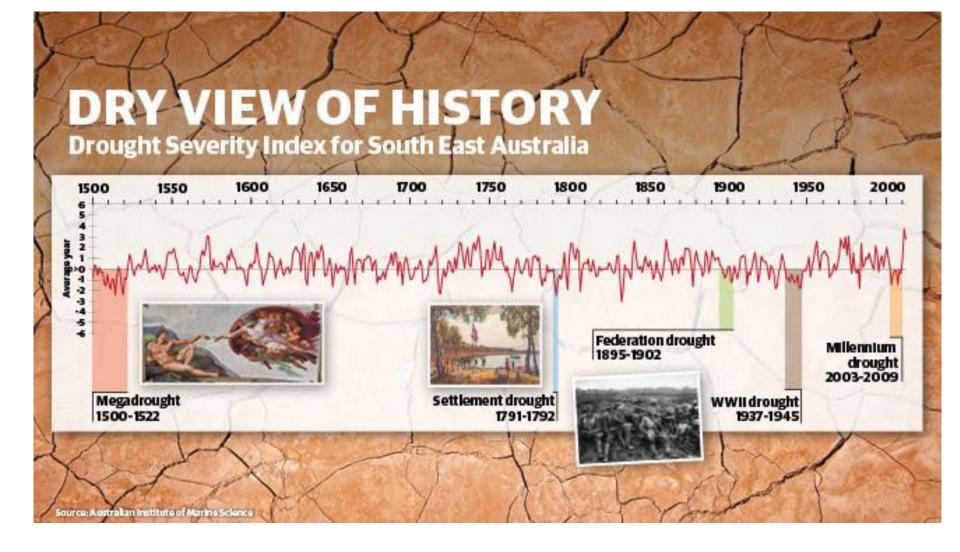
Ze Jiang, Ashish Sharma 🔀, Fiona Johnson

First published:20 February 2020 | https://doi.org/10.1029/2019WR026962








Volume 56, Issue 3 March 2020 e2019WR026962

Related

0.0



Acknowledgements Australian Research Council





School of Civil and Environmental Engineering

### **Forecasting basics revisited**

1. Should predictor variables be transformed to mimic the probability distribution of the response?

ANS – Yes, especially for linear models where log or Box-Cox transforms are often used

2. Should predictor variable be required to exhibit similar spectral attributes as the response?

ANS – Ideally yes, as they will have similar persistence attributes as the response

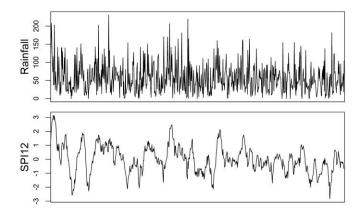
3. HOW?

ANS – Using a suitable Fourier or Wavelet transformation

PROBLEM – Need to know "future" values of the predictor – only possible when the predictors are being simulated using a model (such as a General Circulation Model)

#### THIS MAY BE OUR BEST OPTION FOR PREDICTING DROUGHT INTO THE FUTURE!

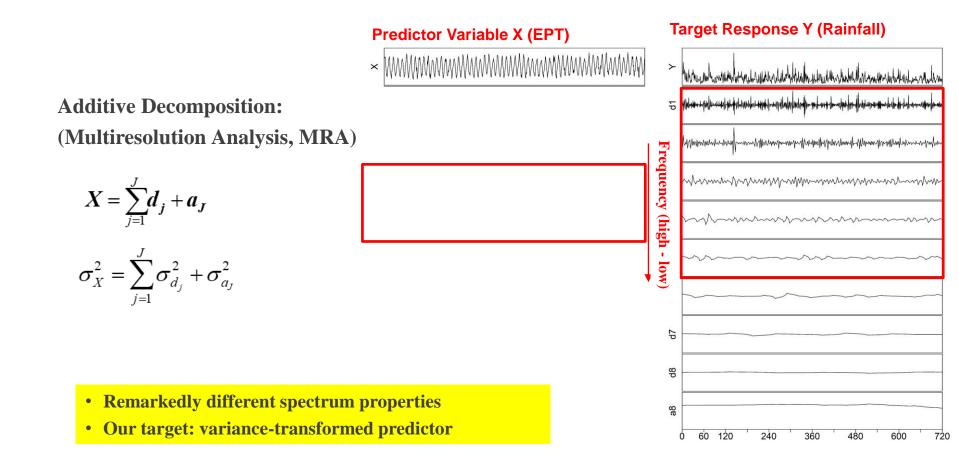



#### How to refine predictor variable to improve modelling?

The hypothesis:

If the spectrum of the predictor is similar to response, the predictive model exhibits better accuracy than otherwise.

|                                                                                                       | Predi                    | ctor: atmo   | ospheric va  | ariables                                     |                   |           |
|-------------------------------------------------------------------------------------------------------|--------------------------|--------------|--------------|----------------------------------------------|-------------------|-----------|
| GPH:92                                                                                                | murshippineship          | www.hunderw  | wwwwwwww     | 4. WWWWWWW                                   | WMMM              | Mituwy    |
| 52. 40<br>5<br>5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | www.www.www.             | www.new.New. | www.www.www. | ntunnuntun                                   | hand the second   | MMMMM     |
| 17. 22 IIII                                                                                           | www.www.www.www.www.www. | www.www.www. | MMMMmmmMMMM  | www.www                                      | MMMMMMM           | MMMM      |
| in a second                                                                                           |                          |              |              | www.                                         |                   |           |
|                                                                                                       | MMMhurhMMM               | ann mann     | htter        | multime                                      | www.hunder        | MMM       |
| WND.5(UND.5(                                                                                          | when when the first      | mundappyrame | www.www.     | MMMMMMMMMM                                   | yrthyron webrythy | A-Myharam |
|                                                                                                       | Muranty                  | ~~h~~~///w/  | MANNAN       | www.www.www.<br>www.www.www.<br>www.www.www. | www.ww            | WW        |
| 1950                                                                                                  | 1960                     | 19/0         | 1980         | 1990                                         | 2000              | 2010      |








#### How to modify the spectrum?

Background: Wavelet Transform





School of Civil and Environmental Engineering

#### How to modify the spectrum to optimise predictability?

# Change predictor X to X' such that X' has a closer spectral representation to the response Y

MRA:

$$X = \sum_{j=1}^{J} d_j + a_J$$
$$\sigma_X^2 = \sum_{j=1}^{J} \sigma_{d_j}^2 + \sigma_{a_J}^2$$

What we are looking for:

$$X' = \tilde{R}\alpha$$
$$\alpha = \sigma_X \tilde{C}$$

where  $\tilde{C}$  is the normalized covariance matrix for the variable set  $(Y, \tilde{R})$ 

Matrix form:

 $X = \tilde{R}I$ 

where  $\tilde{R}$  is standardized reconstructions matrix.

$$\boldsymbol{R} = [\boldsymbol{d}_1, \dots, \boldsymbol{d}_J, \boldsymbol{a}_J] \qquad \boldsymbol{I} = [\boldsymbol{\sigma}_{d_1}, \dots, \boldsymbol{\sigma}_{d_J}, \boldsymbol{\sigma}_{d_J}]^{\mathrm{T}}$$

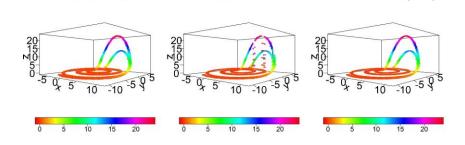
$$\boldsymbol{C} = \frac{1}{n-1} \boldsymbol{Y}^{T} \, \tilde{\boldsymbol{R}} = \left[ \boldsymbol{S}_{\boldsymbol{Y}\tilde{d}_{1}}, \dots, \boldsymbol{S}_{\boldsymbol{Y}\tilde{d}_{J}}, \boldsymbol{S}_{\boldsymbol{Y}\tilde{a}_{J}} \right]$$

$$RMSE_{\min} = \sqrt{\frac{n-1}{n} (\sigma_{\boldsymbol{Y}}^{2} - \|\boldsymbol{C}\|^{2})}$$



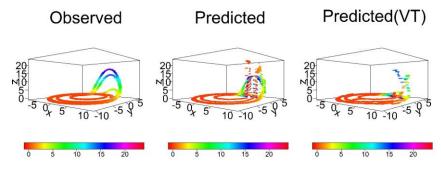
#### **Results – Synthetic example**

A dynamic example (Rössler system):


 $\dot{x} = -y - z,$  $\dot{y} = x + ay,$  $\dot{z} = b + z(x - c).$ 

Use x and y to predict z

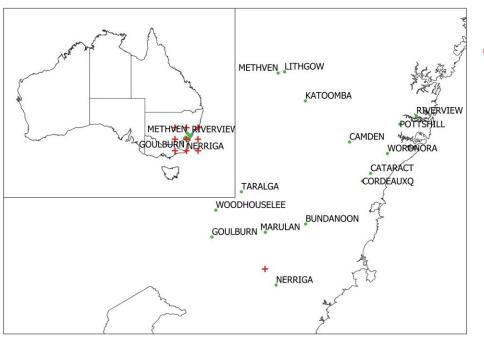
Predicted: predicted z using original x and y Predicted (VT): predicted z using variance-transformed x and y


Calibration: RMSE = 0.113 against 1.189

Observed



Predicted


Validation: RMSE = 2.550 against 4.493

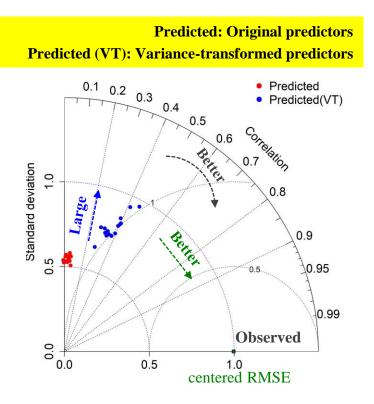




Predicted(VT)

### **Results – Real example**




- Sydney Region Rainfall Stations
- NCEP-NCAR Reanalysis Grids

#### Target response: Drought Index (SPI12, 1950 – 2009)

| Predictor No. | Predictor Name                                                   |  |
|---------------|------------------------------------------------------------------|--|
| 1             | Geopotential heights (m) at 925 hPa (GPH@925)                    |  |
| 2             | Temperature depression (degree C) at 700 hPa (TDP@700)           |  |
| 3             | Temperature depression (degree C) at 500 hPa (TDP@500)           |  |
| 4             | Equivalent potential temperature (Kelvin K) at 500 hPa (EPT@500) |  |
| 5             | Zonal Wind (m/s) at 500 hPa (UWND@500)                           |  |
| 6             | Meridional Wind (m/s) at 500 hPa (VWND@500)                      |  |
| 7             | N-S gradient of mean sea level pressure (NS-MSLP)                |  |



#### **Results – Real example**



Taylor diagram evaluating model performance by the standard deviation, centered RMSE and correlation coefficient.



School of Civil and Environmental Engineering

### To wrap up....

- A **unique** variance transformation is identified for each predictor variable that explains **maximal** information in the corresponding response.
- Results of a dynamic example and a real application show clear improvements in predictability compared to the use of untransformed predictors.
- It is a **generic** method and not limited to hydro-climatological systems.
- Application to correct GCM drought projections using this approach are underway

**Future Work:** 

- The variance transformation technique for forecast with no dependence on future data
- The variance transformation technique for multivariate response characterization



## Forecasting drought revisited – the importance of spectral transformations to dominant atmospheric predictor variables

Ze Jiang<sup>1</sup>, Fiona Johnson<sup>1</sup> and Ashish Sharma<sup>1</sup>

Water Research Centre, Civil and Environmental Engineering UNSW, Sydney, AUSTRALIA http://www.civeng.unsw.edu.au/staff/ashish.sharma

#### Water Resources Research

Technical Reports: Methods

Refining Predictor Spectral Representation Using Wavelet Theory for Improved Natural System Modeling

Ze Jiang, Ashish Sharma 🔀, Fiona Johnson

First published:20 February 2020 | https://doi.org/10.1029/2019WR026962







Volume 56, Issue 3 March 2020 e2019WR026962

Related

0.0



Acknowledgements Australian Research Council